Political Game Theory is a self-contained introduction to game theory and its applications to political science. The book presents choice theory, social choice theory, static and dynamic games of complete information, static and dynamic games of incomplete information, repeated games, bargaining theory, mechanism design and a mathematical appendix covering, logic, real analysis, calculus and probability theory. The methods employed have many applications in various disciplines including comparative politics, international relations and American politics. Political Game Theory is tailored to students without extensive backgrounds in mathematics, and traditional economics, however there are also many special sections that present technical material that will appeal to more advanced students. A large number of exercises are also provided to practice the skills and techniques discussed.
Author(s): Nolan McCarty, Adam Meirowitz
Series: Analytical Methods for Social Research
Edition: 1
Publisher: Cambridge University Press
Year: 2007
Language: English
Commentary: 95303
Pages: 447
Tags: Международные отношения;Международные отношения;Теория международных отношений;
Cover......Page 1
Half-title......Page 3
Series-title......Page 5
Title......Page 7
Copyright......Page 8
Dedication......Page 9
Contents......Page 11
Acknowledgments......Page 15
1 Introduction......Page 17
1. Organization of the Book......Page 19
2 The Theory of Choice......Page 22
1. Finite Sets of Actions and Outcomes......Page 23
2. Continuous Choice Spaces......Page 27
3. Utility Theory......Page 34
4. Utility Representations on Continuous Choice Spaces......Page 36
5. Spatial Preferences......Page 37
6. Exercises......Page 41
1. The Finite Case......Page 43
2. Risk Preferences......Page 54
3. Learning......Page 62
4. Critiques of Expected Utility Theory......Page 67
5. Time Preferences......Page 73
6. Exercises......Page 78
1. The Open Search......Page 82
2. Preference Aggregation Rules......Page 84
3. Collective Choice......Page 92
4. Manipulation of Choice Functions......Page 98
5. Exercises......Page 101
5 Games in the Normal Form......Page 103
1. The Normal Form......Page 105
2. Solutions to Normal Form Games......Page 109
3. Application: The Hotelling Model of Political Competition......Page 117
4. Existence of Nash Equilibria......Page 123
5. Dominance and Mixed Strategies......Page 129
6. Calculating Nash Equilibria......Page 131
7. Application: Interest Group Contributions......Page 133
8. Application: International Externalities......Page 135
9. Computing Equilibria with Constrained Optimization......Page 137
10. Proving the Existence of Nash Equilibria......Page 139
11. Comparative Statics......Page 142
12. Refining Nash Equilibria......Page 154
13. Application: Private Provision of Public Goods......Page 156
14. Exercises......Page 161
6 Bayesian Games in the Normal Form......Page 166
1. Formal Definitions......Page 168
2. Application: Trade Restrictions......Page 170
3. Application: Jury Voting......Page 172
4. Application: Jury Voting with a Continuum of Signals......Page 175
5. Application: Public Goods and Incomplete Information......Page 177
6. Application: Uncertainty About Candidate Preferences......Page 180
7. Application: Campaigns, Contests, and Auctions......Page 182
8. Existence of Bayesian Nash Equilibria......Page 184
9. Exercises......Page 185
7 Extensive Form Games......Page 187
1. Backward Induction......Page 191
2. Dynamic Games of Complete but Imperfect Information......Page 193
3. The Single-Deviation Principle......Page 200
4. A Digression on Subgame Perfection and Perfect Equilibria......Page 201
5. Application: Agenda Control......Page 202
6. Application: A Model of Power Transitions......Page 208
7. Application: A Model of Transitions to Democracy......Page 209
8. Application: A Model of Coalition Formation......Page 213
9. Exercises......Page 217
8 Dynamic Games of Incomplete Information......Page 220
1. Perfect Bayesian Equilibria......Page 224
2. Signaling Games......Page 230
3. Application: Entry Deterrence in Elections......Page 235
4. Application: Information and Legislative Organization......Page 243
5. Application: Informational Lobbying......Page 248
6. Refinements of Perfect Bayesian Equilibrium......Page 252
7. Exercises......Page 264
9 Repeated Games......Page 267
1. The Repeated Prisoner’s Dilemma......Page 268
2. The Grim Trigger Equilibrium......Page 269
3. Tit-for-Tat Strategies......Page 272
4. Intermediate Punishment Strategies......Page 274
5. The Folk Theorem......Page 276
6. Application: Interethnic Cooperation......Page 279
7. Application: Trade Wars......Page 285
8. Exercises......Page 289
1. The Nash Bargaining Solution......Page 291
2. Noncooperative Bargaining......Page 297
3. Majority-Rule Bargaining Under a Closed Rule......Page 302
4. The Baron-Ferejohn Model Under Open Rule......Page 307
5. Bargaining with Incomplete Information......Page 310
6. Application: Veto Bargaining......Page 312
7. Application: Crisis Bargaining......Page 323
8. Exercises......Page 334
11 Mechanism Design and Agency Theory......Page 336
1. An Example......Page 337
2. The Mechanism Design Problem......Page 339
3. Application: Polling......Page 342
4. Auction Theory......Page 344
5. Application: Electoral Contests and All-Pay Auctions......Page 350
6. Incentive Compatibility and Individual Rationality......Page 355
7. Constrained Mechanism Design......Page 358
8. Mechanism Design and Signaling Games......Page 377
9. Exercises......Page 382
12 Mathematical Appendix......Page 385
1. Mathematical Statements and Proofs......Page 386
2. Sets and Functions......Page 388
3. The Real Number System......Page 392
4. Points and Sets......Page 394
5. Continuity of Functions......Page 396
6. Correspondences......Page 399
7. Calculus......Page 400
8. Probability Theory......Page 420
Bibliography......Page 433
Index......Page 439