Author(s): Lamy de la Chapelle, Marc, Nordin Felidj
Publisher: Jenny Stanford Publishing
Year: 2019
Language: English
Pages: 324
Cover......Page 1
Half Title......Page 2
Title Page......Page 4
Copyright Page......Page 5
Contents......Page 6
Preface......Page 14
1. Plasmon-Driven Surface Functionalization of Gold Nanoparticles......Page 16
1.1 Plasmon-Induced Surface Functionalization by Diazonium Salts......Page 17
1.1.1 Grafting by Laser Heating and Threshold Energy Dose E[sub(th)]......Page 18
1.1.2 Plasmon-Induced Grafting on 1D Structure Arrays of Gold Nanostripes......Page 21
1.1.3.1 Description of the gold nanorod array......Page 26
1.1.3.2 Plasmon-driven grafting on gold nanorod array......Page 27
1.1.4 Plasmon-Driven Multi-Functionalization of Gold Nanodisks Array......Page 30
1.1.5 Conclusion......Page 36
1.2.1 Fabrication of Substrates......Page 37
1.2.2 In situ Thiol-Ene Click Reaction......Page 38
1.2.3 Conclusion......Page 43
2.1 Introduction......Page 48
2.2.2 Preparation of GNPs Arrays Covered by PNIPAM with AB Chromophore End Groups (GNPA-PNIPAM-AB)......Page 52
2.2.3 AFM and Optical (Extinction) Characterization of the Thermosensitive Properties of the GNPA-PNIPAM-AB System......Page 54
2.3 Reversible Changes of the LSP Resonance of GNPA-PNIPAM-AB Upon cis/trans Isomerization of Azobenzene......Page 57
2.4.1 ThermoInduced Reversible Changes of Azobenzene SERS Intensity......Page 59
2.4.2 SERS Intensity Changes upon cis/trans Isomerization of Azobenzene......Page 63
2.5 Conclusion......Page 67
3.1 Introduction......Page 72
3.2.3.1 Synthesis of diazonium salt......Page 74
3.2.3.3 Atomic Transfer Radical Polymerization (ATRP) of NIPAM......Page 75
3.3.1 Characterization of PNIPAM-Coated Gold Nanodots......Page 76
3.3.2 Adsorption of Proteins on the PNIPAM-Grafted Gold Nanostructured Surface......Page 79
3.4 Conclusion......Page 82
4.1 Introduction—an Explanation of Tip-Enhanced Raman Spectroscopy......Page 86
4.2 Plasmon-Driven Chemical Reactions......Page 87
4.2.1 Hot Electron–Induced Chemical Reactions......Page 88
4.2.2 Plasmon-Driven Chemical Reactions in SERS......Page 90
4.2.3 Plasmon-Driven Chemical Reaction at the Tip of a Probe......Page 92
4.3 Probing Biological Samples......Page 97
4.3.1 Human Cells and Its Components......Page 98
4.3.2 Virus and Bacteria......Page 101
4.3.3 From Amino Acids to Peptides and Fibrils......Page 104
4.3.4 DNA and RNA......Page 109
4.4 Conclusion......Page 112
5. Surface-Enhanced Spectro-Electrochemistry of Biological and Molecular Catalysts on Plasmonic Electrodes......Page 124
5.1.1 Why Do We Need to Understand Electrocatalytic Reactions?......Page 125
5.1.2 Metal–Porphyrin Complexes in Biology and Chemistry......Page 128
5.2.1 Electrochemistry......Page 130
5.2.2 Infrared and Resonance Raman Spectroscopy of Porphyrins......Page 132
5.2.3 Surface-Enhanced Vibrational Spectroscopy......Page 134
5.2.4 Surface-Enhanced Spectro-Electrochemistry on Porphyrin Systems......Page 136
5.3 Examples......Page 138
5.3.1 Cellobiose Dehydrogenase......Page 139
5.3.2 Cytochrome c Oxidase......Page 142
5.3.3 Hangman Complexes......Page 145
5.4 Conclusions......Page 149
6.1 Introduction and Motivation......Page 154
6.2 Brief Theoretical Background: The Physics of Fluorescence Enhancement......Page 156
6.3 Experimental Approaches to Enhance Fluorescence......Page 159
6.3.1 Top-Down Milling......Page 160
6.3.2 Bottom-Up Self-Assembly......Page 162
6.4 Biochemical Applications of Enhanced Fluorescence......Page 163
6.4.1 Real-Time DNA Sequencing......Page 164
6.4.3 Förster Resonance Energy Transfer......Page 165
6.5 Conclusion......Page 166
7. Plasmonic-Based SERS-Traceable Drug Nanocarriers in Cancer Theranostics......Page 174
7.1 Introduction......Page 175
7.2 SERS Encoded Plasmonic Nanoparticles for Cancer Detection and Imaging......Page 178
7.3 Combining SERS Imaging with Therapy for Cancer Theranostics......Page 184
7.3.1 SERS-Traceable Plasmonic Nanoparticles in Chemotherapeutic Drug Delivery Applications......Page 186
7.3.2 SERS-Traceable Plasmonic Nanoparticles in Photosensitizer Delivery Applications......Page 194
7.4 Conclusions......Page 203
8.1 Introduction......Page 214
8.2.1.1 Fabrication of the nanoparticles......Page 216
8.2.1.2 SERS analysis......Page 217
8.2.2.1 Characterization of the nanoparticles......Page 218
8.2.2.2 Simulation of the E-field distribution......Page 219
8.2.2.3 SERS detection......Page 221
8.2.2.4 SERS sensitivity......Page 225
8.3 Conclusions......Page 227
9.1 Introduction......Page 234
9.2 Raman Spectroscopy of Proteins......Page 236
9.3 Detection of Single Structures......Page 237
9.3.1 Complexity: Sorting of Molecules......Page 238
9.3.2 Submolecular Resolution: Spectral Pointillism......Page 240
9.4.1 Molecular Counting......Page 242
9.4.2 Strong Volatility......Page 243
9.5 Conclusion......Page 244
10.1 Intracellular Applications of SERS......Page 248
10.2.1 Cellular Internalisation Methods......Page 250
10.2.2 The Endocytotic Pathway......Page 251
10.2.3 Manipulating Interactions......Page 254
10.2.4 Toxicity......Page 257
10.3 Intracellular SERS......Page 259
10.3.1 Advances in SERS-Reporter Research......Page 261
10.3.2 Advances in Reporter-Free SERS......Page 268
10.4 Conclusions and Outlook......Page 279
11. SERS-Based Nanotechnology for Imaging of Cellular Properties......Page 292
11.1 Cellular Interaction and Uptake of SERS Nanosensors......Page 293
11.2.1 Simple Functionalization of the Metal Surface......Page 299
11.2.2 Antibody- and Peptide-Functionalized SERS Tags......Page 304
11.2.3 Other Solutions for Cellular SERS-Sensing......Page 309
11.3 Conclusion......Page 310
Index......Page 318