Modern communication systems dealing with huge amounts of data at ever increasing speed try to utilize the best aspects of electronic and optical circuits. Electronic circuits are tiny but their operation speed is limited, whereas optical circuits are extremely fast but their sizes are limited by diffraction. Waveguide components utilizing surface plasmon (SP) modes were found to combine huge optical bandwidth and compactness of electronics, and plasmonics thereby became considered as the next chip-scale technology. In this book, we concentrate on the SP waveguide configurations ensuring nanoscale confinement and review the current status of this rapidly emerging field, considering different configurations being developed for nanoscale plasmonic guides and circuits. Both fundamental physics and application aspects of plasmonics are reviewed in detail by world-leading experts.
A unique feature of this book is its strong focus on a particular subfield of plasmonics dealing with subwavelength (nanoscale) waveguiding, an area which is especially important in view of explosively growing interest to plasmonic interconnects and nanocircuits. This research direction came to the fore very recently, driven by the ever increasing demand of faster and smaller interconnects to be used inside computer chips, and stimulated by the progress in our understanding of basic physical phenomena involved in SP excitation, imaging and manipulation.
Contents: Introduction to Surface Plasmon-Polariton Waveguides (S I Bozhevolnyi); Negative Dielectric Optical Waveguides for Nano-Optical Guiding (J Takahara); Nanoparticle Plasmon Waveguides (S A Maier); Surface Plasmon Polariton Gap Waveguide and Its Applications (K Tanaka); Metal Heterostructures (G P Wang); Plasmonic Slot Waveguides (G Veronis & S Fan); All-Optical Plasmonic Modulators and Interconnects (D Pacifici et al.); Metal Trench Waveguides: Experiments and Analysis (M Orenstein); Fundamentals of Channel and Wedge Plasmon Polaritons (E Morerno et al.); Channel Plasmon-Polaritons in Triangular Grooves (D K Gramotnev); Nanophotonic Components Utilizing Channel Plasmon Polaritons (V S Volkov et al.); Adiabatic Concentration and Coherent Control in Nanoplasmonic Waveguides (M I Stockman); Nanoplasmonics: Components, Devices and Circuits (M L Brongersma et al.).
Author(s): Sergey I. Bozhevolnyi, Sergey I. Bozhevolnyi
Publisher: Distributed by World Scientific Pub
Year: 2009
Language: English
Pages: 450
City: Singapore; Hackensack, NJ
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;
CONTENTS......Page 8
Preface......Page 6
1. Propagating and evanescent waves......Page 10
2. Interface electromagnetic excitations......Page 13
3. Surface plasmon polaritons (SPPs)......Page 14
4. Short- and long-range SPP modes......Page 19
5. Gap SPP modes......Page 22
6. Effective-index modelling of SPP waveguides......Page 26
6.1. Symmetric thin-film optical waveguides......Page 27
6.2. Stripe SPP waveguides......Page 28
6.3. Symmetric stripe SPP waveguides......Page 30
6.4. G-SPP waveguides......Page 32
6.5. Channel SPP waveguides......Page 35
Acknowledgments......Page 38
References......Page 39
1. Introduction......Page 42
3. Diffraction limit of 3D optical waves......Page 44
4. 2D optical waves......Page 45
5. Topology of wavenumber surfaces......Page 46
6. Diffraction limit of 2D optical waves......Page 48
7.1. Structures......Page 50
7.2. Characteristic equations of ND gap and ND film......Page 51
7.3. Coupled mode of SPP......Page 52
8.2. Characteristic equations of ND rod and ND hole......Page 54
8.3. Characteristic equations of ND tube and ND coaxial hole......Page 57
8.4. Propagation modes in ND rod......Page 58
8.5. Propagation modes in ND hole......Page 59
8.6. Propagation modes in ND tube and ND coaxial hole......Page 61
9.1. Propagation modes in lossy waveguides......Page 63
9.2. Propagation length......Page 65
9.3. Tapered waveguides......Page 66
10. Optical hetero-interfaces......Page 67
Acknowledgements......Page 69
References......Page 70
1. Introduction to localized surface plasmons......Page 72
2. Dipolar plasmon resonances in metal nanoparticles in the quasi-static approximation......Page 74
3. Beyond the quasi-static approximation......Page 80
4. Intuitive description of coupling between localized plasmons......Page 84
5. Metal nanoparticle waveguides......Page 88
6. Two-dimensional photonic metal nanoparticle plasmon waveguides......Page 95
References......Page 98
1. The structure of SPGWs......Page 104
2. Simulation of excitation and propagation of SPPs in a straight SPGW......Page 107
2.1 Simulation by a volume integral equation......Page 108
2.2 Results by numerical simulations......Page 109
2.3 Field distributions along the SPGW......Page 112
2.4 Calculation of complex propagation constants by least-squares fitting......Page 114
2.5 Other structures of SPGWs......Page 117
3. Application of SPGWs to nanosize planar optical circuits......Page 120
3.1 E-plane optical circuits......Page 121
3.2 H-plane optical SPGW circuits......Page 123
4.1 Geometry of the problem......Page 125
4.2 Enhanced and localized optical intensity distribution......Page 127
5. Conclusions......Page 130
References......Page 131
1.1. Metal gap waveguides......Page 136
1.2. Metal-dielectric-air structures......Page 138
1.3. Metal films......Page 139
2.1. Rectangular metal gap heterowaveguides......Page 141
2.2. Trapezoid metal gap heterowaveguides......Page 145
3.1. Metal gap heterowaveguides......Page 148
3.2. Planar metal heterowaveguides......Page 152
4.1. Directional beaming of light......Page 155
4.2. Nanoantennas......Page 160
References......Page 164
Plasmonic Slot Waveguides G. Veronis and S. Fan......Page 168
1. Modes of three-dimensional subwavelength plasmonic slot waveguides......Page 169
1.1. Simulation method......Page 170
1.2. Simpli ed plasmonic structures......Page 172
1.3. Symmetric plasmonic slot waveguide......Page 174
1.4. Asymmetric plasmonic slot waveguide......Page 180
2. Couplers between dielectric and plasmonic waveguides......Page 184
2.1. Simulation method......Page 186
2.2. Direct coupling......Page 187
2.3. Multisection taper......Page 190
2.4. Fabry-Perot structure......Page 191
References......Page 192
1. Introduction......Page 198
2.1. Fabrication and experimental methods......Page 200
2.2. Theoretical framework......Page 202
2.3. Uncoated plasmonic interferometers......Page 203
2.4. QD-coated plasmonic interferometers......Page 206
2.5. All-optical modulation in QD-coated plasmonic interferometers......Page 211
3.1. New designs for improved figures of merit......Page 217
4.1. Multilevel plasmonic modulators and interconnects......Page 222
4.2. Incoupling strategies......Page 224
References......Page 226
Metal Trench Waveguides: Experiments and Analysis M. Orenstein......Page 234
1. Introduction......Page 235
2. The thin but infinite plasmonic trench: gap waveguide......Page 236
3. From metal stripes to slots and trenches......Page 239
3.1. From stripes to slots......Page 240
3.2. Modes of deep symmetrical trench modes......Page 243
3.3. Conclusions......Page 246
4. Hybridization of modes in structured channels......Page 247
5. Nano – wide asymmetrical plasmonic trenches......Page 251
Acknowledgments......Page 256
References......Page 257
1. Introduction......Page 262
2. Approximate approaches......Page 264
2.2. Geometric optics approximation and e ective index method......Page 265
3. Rigorous techniques. Basic structures......Page 268
3.1. Dispersion......Page 269
3.2. Modal shape, size, and loss......Page 271
3.3. Geometrical dependence......Page 273
4. Rigorous techniques. Truncated structures......Page 275
References......Page 277
1. Introduction......Page 282
2. Triangular grooves for sub-wavelength guiding......Page 284
3. Plasmonic groove waveguides with sharp bends......Page 295
4. Nano-scale Fabry-Perot resonator in groove waveguides......Page 303
5. Nano-focusing in triangular metallic grooves......Page 308
References......Page 323
Nanophotonic Components Utilizing Channel Plasmon Polaritons V. S. Volkov et al.......Page 326
1. Introduction: getting into the groove......Page 327
2. Experimental arrangement......Page 329
3. Experimental results......Page 332
3.1. CPP guiding in straight V-grooves......Page 333
3.2. Bend loss in CPP guides: bend curvature or defect limited?......Page 338
3.3. CPP - based photonic components......Page 347
4. Conclusions......Page 355
References......Page 356
1. Introduction......Page 362
2.1. Introduction to adiabatic concentration in nanoplasmonics......Page 364
2.2. Adiabatic stopping of SPPs at interface of metal with graded semiconductor......Page 366
2.3. General layered system......Page 371
2.4. Symmetric layered system......Page 374
2.5. Adiabatic SPP concentration in quasistatic regime......Page 376
2.6. Adiabatic SPP stopping in metal wedge......Page 382
2.7. Adiabatic concentration and stopping of SPPs in tapered nanoplasmonic cylinder......Page 391
2.7.1. Experimental Observations of Adiabatic SPP Concentration......Page 397
3.1. Introduction to spatio-temporal coherent control......Page 398
References......Page 408
Nanoplasmonics: Components, Devices and Circuits M. L. Brongersma et al.......Page 414
1. The value of plasmonics as a new device technology......Page 415
2. Diffraction-limited plasmonic waveguides......Page 416
3. Plasmonic waveguides affording nanoscale mode confinement......Page 422
4. Plasmonic antenna and resonator structures......Page 425
5. Plasmonics as a bridge between microscale photonics and nanoscale electronics......Page 428
6. Recent developments in active plasmonics......Page 430
7. Integration of plasmonic components......Page 433
8. Plasmon-enhanced photon sources and quantum plasmonics......Page 436
9. Conclusions......Page 438
Acknowledgments......Page 439
References......Page 440
Index......Page 448