Plasma processes and polymers

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This volume compiles essential contributions to the most innovative fields of Plasma Processes and Polymers. High-quality contributions cover the fields of plasma deposition, plasma treatment of polymers and other organic compounds, plasma processes under partial vacuum and at atmospheric pressure, biomedical, textile, automotive, and optical applications as well as surface treatment of bulk materials, clusters, particles and powders. This unique collection of refereed papers is based on the best contributions presented at the 16th International Symposium on Plasma Chemistry in Taormina, Italy (ISPC-16, June 2003). A high class reference of relevance to a large audience in plasma community as well as in the area of its industrial applications.

Author(s): Riccardo d'Agostino, Pietro Favia, Christian Oehr, Michael R. Wertheimer
Publisher: Wiley-VCH
Year: 2005

Language: English
Commentary: Conference publication
Pages: 549
City: Weinheim; [Chichester]
Tags: Физика;Физика плазмы;Научные статьи и сборники

Plasma Processes and Polymers......Page 4
3527404872......Page 1
Contents......Page 8
Preface......Page 20
List of Contributors......Page 22
Part I Plasma Deposition of Thin Films......Page 32
1.1 Introduction......Page 34
1.2 Experimental......Page 40
1.3.2 Variation of the Density of Functional Groups......Page 41
1.3.3 Structure and Stability of Copolymers......Page 45
1.3.5 Relation between Functional Groups of Copolymers and Adhesion......Page 46
1.4 Discussion......Page 50
2.1 Introduction......Page 54
2.2 Experimental......Page 55
2.3 Results and Discussion......Page 58
2.4 Conclusions......Page 66
3.1 Introduction......Page 70
3.2.2 Plasma-Deposition Apparatus......Page 71
3.2.3 Characterization Techniques......Page 73
3.3 Results and Discussion......Page 74
3.4 Conclusions......Page 79
4.1 Introduction......Page 82
4.2 Experimental......Page 83
4.3.1 Etching and Deposition in C(4)F(8) Plasmas......Page 85
4.3.2 Etching and Deposition Experiments in CHF(3)/CH(4) Plasmas......Page 89
4.3.3 FC Film Characterization: Chemical Composition......Page 91
4.4 Conclusions......Page 94
5.1 Introduction......Page 96
5.2.2 Plasma Deposition Technique......Page 97
5.2.3 Surface Characterization......Page 98
5.3.1 Characterization of Deposited Film......Page 99
5.3.2 Platelet Adhesion......Page 104
6.1 Introduction......Page 108
6.2 Experimental Systems......Page 109
6.3 Results and Discussion......Page 110
6.4 Conclusions......Page 116
7.1 Introduction......Page 118
7.2.1 Deposition Apparatus......Page 119
7.2.2 Experimental Conditions......Page 120
7.3.1 X-ray Auger Electron Spectroscopy (XAES)......Page 121
7.3.2 Electron Energy Loss Spectroscopy (EELS)......Page 122
7.4 Conclusion......Page 124
8.1 Introduction......Page 126
8.2 Experimental......Page 127
8.3 Calculation of the rate constant......Page 128
8.4 Results and discussion......Page 130
8.5 Conclusion......Page 132
9.1 Introduction......Page 134
9.2 Experimental......Page 135
9.3 Results......Page 137
9.4 Discussion......Page 143
9.5 Conclusions......Page 145
10.1 Introduction......Page 148
10.2 Experimental......Page 150
10.3.1 Surface Morphology......Page 151
10.3.2 Surface Molecular Structure......Page 153
10.3.3 Dispersion Behavior of AA-Plasma-Polymer-Coated TiO(2) Nanoparticles......Page 155
10.4 Conclusion......Page 158
Part II Plasma-Grafting of Functional Groups......Page 160
11.1 Introduction......Page 162
11.2.2 Plasma Treatment of the Samples......Page 163
11.2.3 Characterization......Page 167
11.3.1 Surface Chemistry......Page 168
11.3.2 Surface Morphology......Page 171
11.4 Conclusion......Page 173
12.1 Introduction......Page 174
12.2.2 Experimental Techniques......Page 175
12.3.1 Effect of Treatment Time......Page 176
12.3.2 Effect of Plasma Power......Page 181
12.3.3 Effect of the Pressure inside the Chamber......Page 183
12.3.4 Durability of the Treatment Effect......Page 184
12.4 Conclusions......Page 185
13.1 Introduction......Page 188
13.2 Materials and Methods......Page 189
13.3.1 Contact-Angle and Weight-Loss Measurements......Page 191
13.3.2 Aging Studies......Page 197
13.3.3 XPS results......Page 199
13.3.4 Titration of the Surface Amino Groups......Page 201
13.3.5 Wide-Angle X-ray Diffraction......Page 202
13.3.6 Preliminary Results on PVDF Metallization......Page 204
13.3.7 Assays on Piezoelectric Coefficient Determination......Page 205
13.4 Conclusion......Page 206
14.1 Introduction......Page 208
14.2.1 Materials......Page 209
14.2.2 Experimental Techniques......Page 210
14.3 Results and Discussion......Page 211
14.4 Conclusions......Page 222
15.1 Introduction......Page 224
15.2 Experimental Setup......Page 225
15.2.1 Power Transmitted to the Plasma......Page 226
15.3 Paulownia tomentosa Steud......Page 228
15.4 Results and Discussion......Page 229
15.5 Conclusion......Page 233
16.1 Ion Modification of Polymers......Page 236
16.1.3 Ion-modified Polymers for Sensor Application......Page 237
16.1.4 Objective of this Work......Page 238
16.2.1 Sample Preparation......Page 239
16.2.2 Evaluation of Structural Changes......Page 240
16.2.4 Electrical Measurements......Page 241
16.3.1 Structural Changes......Page 242
16.3.2 Moisture Uptake......Page 247
16.4 Conclusions......Page 250
17.1 Introduction......Page 254
17.2.2 Fluorination Procedure: The Plasma-enhanced Fluorination (PEF)......Page 255
17.2.3 XPS Characterization......Page 256
17.3.1 Plasma-enhanced Fluorination......Page 257
17.3.2 Comparison with Direct F(2)-gas Fluorination......Page 259
17.4 Concluding Remarks......Page 262
18.1 Introduction......Page 264
18.2.2 Plasma Treatment......Page 267
18.2.4 Surface-characterization Techniques......Page 268
18.3.2 Plasma Chlorination......Page 269
18.3.3 CO(2) and O(2) Plasma Treatment......Page 277
18.4 Conclusion......Page 281
19.1 Introduction......Page 284
19.2 Experimental Details......Page 285
19.3.1 Untreated PET......Page 288
19.3.2 Plasma-treated PET......Page 290
19.3.3 Laser-treated PET......Page 291
19.4.1 Surface Oxidation......Page 295
19.4.2 Surface Degradation......Page 296
19.4.3 Al–PET Adhesion......Page 298
19.5 Conclusion......Page 299
20.1 Introduction......Page 302
20.2 Experimental......Page 304
20.3 Results and Discussion......Page 305
20.4 Conclusions......Page 310
21.1 Introduction and Experimental Conditions......Page 312
21.2.1 Etching of POSS Copolymers in Oxygen Plasmas......Page 315
21.2.2 Surface Roughness of POSS Polymers after Plasma Treatment......Page 318
21.3 Conclusions......Page 322
Part III Plasma and Life Science......Page 324
22.1 Introduction......Page 326
22.2.1 Plasma Needle......Page 328
22.2.3 Fluorescent Probe......Page 329
22.2.4 Calibration with NO Radicals......Page 330
22.3.1 Raman Scattering......Page 332
22.3.2 The Fluorescent Probe Measurements......Page 333
22.4 Conclusions......Page 338
23.1 Introduction......Page 340
23.2 Experimental......Page 341
23.3.1 Devices with Geometrically Well-described Trenches Oriented Parallel to the Applied Field......Page 342
23.3.2 Devices with Geometrically Defined Trenches Oriented Nonparallel to the Applied Field......Page 344
23.3.3 Devices with Pores in Micrometer Dimension......Page 345
23.4 Conclusions......Page 348
24.1 Introduction......Page 350
24.2 Experimental......Page 351
24.3 Results......Page 353
24.4 Discussion......Page 360
24.5 Conclusions......Page 361
25.1 Introduction......Page 364
25.2.1 Plasma Processing......Page 367
25.2.2 Surface Diagnostics......Page 368
25.3.1 Amino Functionalization in the UHV Plasma System......Page 369
25.3.2 Amino Functionalization in the Low-Vacuum Plasma Reactor......Page 374
25.4 Summary......Page 378
26.1 Introduction......Page 382
26.2.1 Substrate Preparation......Page 384
26.2.2 Plasma-Deposition Processes......Page 385
26.2.4 XPS Analysis......Page 386
26.2.6 Bacterial Adhesion......Page 387
26.3.1 PEO-like Film Deposition......Page 388
26.3.2 Ag/PEO-like Films......Page 391
26.2.3 Evaluation of Protein Adsorption......Page 396
26.3.4 Evaluation of Bacterial Adhesion......Page 398
26.4 Conclusion......Page 400
27.1 Introduction......Page 404
27.2.2 Surface Diagnostic......Page 406
27.2.3 Cell Culture......Page 407
27.3.1 PD-PEO Coatings......Page 408
27.3.3 Micropatterning of PEO-like Coatings......Page 412
27.4 Conclusions......Page 416
28.1 Introduction......Page 420
28.2.1 Substrates......Page 421
28.2.3 Surface Characterization......Page 422
28.3 Results and Discussion......Page 423
28.4 Conclusions......Page 431
29.1 Introduction......Page 434
29.2 Experimental......Page 435
29.3 Conclusions......Page 442
Part IV Chemical Synthesis, Powders and Non-Equilibrium Effects......Page 444
30.1 Introduction......Page 446
30.2.1 Experimental Setup......Page 448
30.2.3 Conditions of Experiments......Page 449
30.2.4 Definition of the Process Parameters......Page 450
30.3.1 Essential Parameters of the Process Characteristics......Page 451
30.3.2 Main Reaction Products – Hydrocarbons and Carbon Black......Page 453
30.3.3 Formation of Fluorine-containing Organic Compounds......Page 455
30.4 Conclusions......Page 457
31.1 Introduction......Page 462
31.2.1 Equipment......Page 463
31.3.1 Model Compounds......Page 464
31.4 Discussion......Page 468
31.5 Conclusions......Page 470
32.1 Introduction......Page 474
32.2.1 Apparatus......Page 475
32.2.2 Procedure......Page 476
32.3 Results and Discussion......Page 477
32.4 Conclusions......Page 484
33.1 Introduction......Page 486
33.2 The Setup for DCM Production......Page 487
33.3 Results and Discussion......Page 489
33.3.1 Measurement of the Mean Nickel Content......Page 490
33.3.3 X-ray Diffraction Investigations......Page 491
33.3.4 Magnetic Properties of the Processed Powder......Page 492
33.3.5 X-ray Photoelectron Spectroscopy......Page 493
33.4 Conclusion......Page 494
34.1 Introduction......Page 496
34.2 Experimental Setup......Page 497
34.3.1 Structures of Spherical Grains......Page 499
34.3.2 Plasma Liquid Crystal......Page 500
34.4 Wave Phenomena......Page 501
34.5.1 Measurement of the Grain Charge......Page 503
34.5.2 Application of Thermophoresis for Diagnostics of Dust-Particle Confinement......Page 504
34.6 Conclusion......Page 506
35.1 Introduction......Page 508
35.2 Experimental......Page 509
35.3 General Aspects of Carbon-Nanotube Deposition with He-based APG......Page 510
35.4 Aligned Nanotube Growth with Pulsed APG......Page 512
35.4.1 Effect of Pulsed Voltage on Alignment......Page 514
35.4.2 Growth Temperature and Pulse Duty......Page 515
35.5 Concluding Remarks and Future Work......Page 516
36.1 Introduction......Page 520
36.2 Experimental Setup......Page 521
36.3 Results and Discussion......Page 523
36.4 Conclusions......Page 528
37.1 Introduction......Page 530
37.2 Experimental Apparatus and Procedures......Page 531
37.3.1 Particle Residence Time......Page 534
37.3.2 Appearance and Disappearance Voltages......Page 536
37.3.3 Upper Limit of Injected Nitrogen Flow Rate......Page 540
37.3.4 Downstream-Gas Temperature......Page 545
37.3.5 Optimization......Page 547
37.4 Conclusion......Page 548