Plant Flow Measurement and Control Handbook is a comprehensive reference source for practicing engineers in the field of instrumentation and controls. It covers many practical topics, such as installation, maintenance and potential issues, giving an overview of available techniques, along with recommendations for application. In addition, it covers available flow sensors, such as automation and control. The author brings his 35 years of experience in working in instrumentation and control within the industry to this title with a focus on fluid flow measurement, its importance in plant design and the appropriate control of processes.
The book provides a good balance between practical issues and theory and is fully supported with industry case studies and a high level of illustrations to assist learning. It is unique in its coverage of multiphase flow, solid flow, process connection to the plant, flow computation and control. Readers will not only further understand design, but they will also further comprehend integration tactics that can be applied to the plant through a step-by-step design process that goes from installation to operation.
Key Features
-Provides specification sheets, engineering drawings, calibration procedures and installation practices for each type of measurement
-Presents the correct flow meter that is suitable for a particular application
-Includes a selection table and step-by-step guide to help users make the best decision
-Cover examples and applications from engineering practice that will aid in understanding and application
Author(s): Swapan Basu
Series: Academic Press
Edition: 1st
Publisher: Elsevier
Year: 2019
Language: English
Pages: 1266
Cover......Page 1
Plant Flow Measurement and Control Handbook......Page 2
Copyright......Page 3
XI -
Flow Conditioning Computation and Control......Page 4
Foreword......Page 5
Index......Page 6
Acknowledgments......Page 8
1.0.0 INTRODUCTION......Page 9
1.0.1 DISCUSSIONS COVERED IN THIS BOOK......Page 11
1.1.0 Flow Measurement Basics......Page 13
1.1.1 BASIC CHARACTERISTICS AND ASSOCIATED TERMS FOR FLOW METERS......Page 16
1.1.2 PHYSICS ON FLUID PROPERTIES......Page 17
1.2.1 IMPORTANT TERMS RELATED TO INSTRUMENTATION......Page 27
1.2.2 TERMS RELATED TO THE PROCESS......Page 30
2.0.0 BASIC FLUID MECHANICS......Page 39
2.1.2 BERNOULLI'S EQUATION FOR FLOW CALCULATIONS......Page 42
2.1.3 FLOW EQUATION IN TERMS OF PIPE GEOMETRY......Page 43
2.1.4 DISCHARGE COEFFICIENT......Page 44
2.1.6 RELATED DISCUSSION TERMS......Page 45
2.1.8 MEASUREMENT AND FLOW COMPUTATION......Page 46
2.1.9 PRESSURE/TEMPERATURE COMPENSATION FOR FLOW......Page 49
3.0.0 FLOW MEASUREMENT TYPES AND PRINCIPLES......Page 50
3.1.0 Fluid Flow Measurement Types and Principles......Page 51
3.1.1 INFERENTIAL FLOW METER TYPES AND PRINCIPLES......Page 52
3.1.2 POSITIVE DISPLACEMENT FLOW METER TYPES AND PRINCIPLES......Page 60
3.1.3 VELOCITY AND FORCE FLOW METER TYPES AND PRINCIPLES......Page 65
3.1.4 MASS FLOW METER TYPES AND PRINCIPLES......Page 79
3.1.5 FLUID FLOW MEASUREMENT IN AN OPEN CHANNEL......Page 85
3.2.0 Solid Flow Measurement Types and Principles......Page 91
3.2.1 SOLID FLOW METERS BASED ON FORCE AND DEFLECTION PRINCIPLES......Page 92
3.2.2 SOLID FLOW METERS BASED ON LOAD SPEED/TIME PRINCIPLES......Page 97
3.2.3 NONCONTACT TYPE SOLID FLOW MEASUREMENT......Page 102
3.3.1 MAJOR CHARACTERISTIC FEATURES OF SLURRY FLOW AND ITS EFFECTS......Page 105
3.3.2 FLOW METER TYPES FOR SLURRY FLOW......Page 106
3.4.0 Multiphase Flow Measurement Types and Principles......Page 107
3.4.1 APPROACHES FOR MULTIPHASE FLOW METERING......Page 108
3.4.2 TYPES OF METERING PHILOSOPHIES......Page 109
3.4.3 MFM TECHNOLOGIES......Page 112
4.0.0 SELECTION OF FLOW METERS......Page 117
4.1.0 General Discussions on the Flow Meter Selection Process (Closed Pipe)......Page 119
4.2.1 PROCESS ISSUES FOR FLOW METER SELECTION......Page 121
4.2.2 SELECTION PROCESS RELATED TO THE FLOW METER......Page 124
4.4.0 Cost and Approval Considerations for Flow Meter Selection......Page 129
4.5.0 Flow Meter Selection Matrix......Page 130
5.0.0 DISCUSSIONS ON PERMANENT PRESSURE LOSS AND ALLIED ISSUES......Page 133
6.1.0 Principles and Good Practices for Installations......Page 135
6.2.0 Principles and Good Practices for Calibrations......Page 138
6.2.1 FLOW METER CALIBRATION ISSUES......Page 140
7.0.0 CRITICAL OR SONIC NOZZLE......Page 142
7.3.0 Functional Details of Sonic Flow Nozzles......Page 143
8.1.1 AEROFOIL WORKING PRINCIPLES......Page 144
8.2.0 British Thermal Unit Measurement......Page 145
8.2.2 SENSORS USED IN BRITISH THERMAL UNIT MEASUREMENT SYSTEMS......Page 146
8.3.1 THEORY OF OPERATION......Page 148
8.3.3 DISCUSSIONS ON CROSS-CORRELATION MEASUREMENT......Page 151
LIST OF ABBREVIATIONS......Page 152
REFERENCES......Page 153
FURTHER READING......Page 156
1.0.0 POSITIVE DISPLACEMENT METERS: GENERAL DISCUSSIONS......Page 340
1.1.1 GENERAL REQUIREMENTS AS PER ISO 5167-PART 1......Page 158
1.1.2 GENERAL DISCUSSIONS ON INSTALLATION (ISO 5167-1:2003)......Page 159
1.1.3 The Étoile Straightener......Page 160
1.2.2 Types of Corrosion Process......Page 1137
1.3.0 Volume and Mass Conversion Factor......Page 161
2.3.0 Pipe Flow of Slurries......Page 162
2.2.0 Tapping Point Installations and Mounting......Page 169
2.5.0 Specification of Hall Sensors......Page 939
3.2.3 Operation Part of IEC 61511......Page 171
2.2.3 ORIFICE PLATE MOUNTING......Page 172
2.2.4 IMPULSE LINE INSTALLATION......Page 175
2.2.5 UPSTREAM/DOWNSTREAM STRAIGHT PIPE REQUIREMENTS......Page 179
2.2.6 PERMANENT PRESSURE LOSS......Page 180
3.1.0 Solid Flow Characteristic Features and Essential Properties......Page 1134
2.3.2 Slurry Flow in a Vertical Pipe......Page 181
2.5.2 Straight Length Requirement and Flow Conditioners......Page 182
2.4.1 LIQUID FLOW METER CALIBRATION: GENERAL DISCUSSION......Page 183
2.4.3 ORIFICE PLATE CALIBRATION......Page 186
3.2.1 Elbow and PCHB for Flow......Page 188
2.5.3 INTEGRAL ORIFICE ASSEMBLY......Page 191
2.5.4 SENIOR ORIFICE ASSEMBLY......Page 192
2.4.0 Material Selection, Sizing, and Flow Range......Page 416
5.3.1 Features of Digital Local Flow Meters......Page 955
3.0.0 FLOW NOZZLE......Page 195
3.1.0 Description of the Construction Details and Features: Flow Nozzles......Page 196
3.3.0 Rectangular Weirs......Page 199
3.2.1 TAPPING STYLES......Page 200
3.2.2 TAPPING DIAMETER AND SOURCE POINT......Page 201
3.2.3 FLOW NOZZLE MOUNTING......Page 202
3.2.4 Major Application Areas......Page 444
3.3.0 Discussions on ISO 5167-3:2003 Standard......Page 206
4.4.4 EMFMs in Paper Plants......Page 662
7.2.2 Installation Requirements of Paddle Type Flow Switches......Page 208
3.5.0 Specification/Data Sheet......Page 209
4.7.2 PULL CHORD SWITCH......Page 782
3.6.1 SONIC FLOW PRINCIPLES......Page 211
3.4.0 Meter Size, Selection, and Performance......Page 213
4.2.1 TAPPING DETAILS......Page 216
4.2.4 STRAIGHT LENGTH REQUIREMENTS......Page 217
4.2.5 PERMANENT PRESSURE LOSS......Page 218
4.3.1 GENERAL DISCUSSION......Page 220
4.5.0 Specification/Data Sheet for Venturi Tube......Page 221
5.1.1 Description of Direct-Flow Gages......Page 950
5.1.1 FLOW ELEMENT DESCRIPTION AND APPLICATIONS......Page 224
5.2.0 Dall Tube......Page 225
5.2.2 CHARACTERISTIC FEATURES AND APPLICATIONS OF DALL TUBES......Page 226
6.0.1 BASIC PRINCIPLES OF PITOT TUBES......Page 227
6.0.2 FLOW CALCULATIONS......Page 228
5.0.0 Wedge Flow Element......Page 229
6.1.4 PITOT TUBE SPECIFICATIONS......Page 231
6.2.1 DESIGN AND CONSTRUCTION DETAILS......Page 232
6.2.3 MOUNTING AND INSTALLATION......Page 234
6.2.4 SPECIFICATION OF AN AVERAGE PITOT......Page 235
6.2.5 AIR AND FLUE GAS MEASUREMENT BY AN AVERAGE PITOT TUBE......Page 236
6.3.0 Krell Bar......Page 237
7.1.1 DESCRIPTION......Page 238
7.2.0 Flow Element Calculation......Page 240
7.3.3 PRESSURE AND TEMPERATURE MEASUREMENT AND COMPENSATION......Page 241
7.4.3 TRANSMITTER CONNECTION......Page 242
7.5.2 SPECIFIC DATA......Page 244
8.1.1 WORKING PRINCIPLES......Page 246
8.1.2 SIZING AND FLOW EQUATION......Page 247
8.1.4 DESIGN DETAILS......Page 248
8.1.5 MOUNTING AND INSTALLATION......Page 249
8.1.7 SPECIFIC DATA......Page 251
8.2.1 CHARACTERISTIC FEATURES OF ELBOW TAPPING FLOW ELEMENTS......Page 252
9.1.1 BASIC PRINCIPLES OF OPERATION OF A ROTAMETER......Page 253
9.1.2 ROTAMETER FLOW SIZING......Page 255
9.1.4 ROTAMETER TYPES......Page 256
9.1.5 ROTAMETER DESIGN DETAILS......Page 258
9.2.0 Other Variable Area Flow Meters......Page 260
LIST OF ABBREVIATIONS......Page 262
FURTHER READING......Page 263
APPENDIX
VI - Enclosure Electrical Protection......Page 1136
1.0.0 BASIC PRINCIPLES AND GENERAL DISCUSSION......Page 265
1.0.1 APPROACHES FOR OPEN CHANNEL FLOW MEASUREMENT......Page 266
2.3.2 MEASUREMENT ACCURACY......Page 272
1.0.3 SELECTION FOR OPEN-CHANNEL FLOW MEASUREMENT......Page 276
2.4.2 FEATURES AND ADVANTAGES......Page 278
1.1.0 Fluid Mechanics of Open Channels......Page 279
2.4.2 Applications in Flow Measurement......Page 938
1.1.2 CONSERVATION OF ENERGY......Page 280
1.1.3 MOMENTUM FORCE AND VELOCITY DISTRIBUTION......Page 281
2.2.1 Homogeneous Flow......Page 282
1.1.6 FRICTION EQUATIONS AND ROUGHNESS COEFFICIENT......Page 283
1.1.7 SPECIFIC ENERGY......Page 285
1.2.0 Properties of Open Channels......Page 288
2.0.0 DISCUSSIONS ON METER TYPES USED IN CUSTODY TRANSFER......Page 289
2.1.2 EXPLANATION OF FLUME GEOMETRY......Page 290
2.1.4 SITE CONDITIONS AND ASSOCIATED TECHNICAL ISSUES......Page 291
2.1.5 SUBMERGENCE AND MODULAR FLOW......Page 292
3.1.2 Positive Displacement Meter Complex Flow Measurement......Page 647
2.1.7 HEAD SENSING TECHNOLOGY......Page 293
2.2.0 Venturi Flume......Page 294
2.2.1 DIFFERENT VENTURI FLUMES......Page 295
2.3.0 Parshall Flume......Page 297
3.1.5 Ultrasonic Meter for Complex and Slurry Flow Measurement......Page 652
2.3.2 PARSHALL FLUME INSTALLATION DISCUSSIONS......Page 300
2.4.0 H Flume......Page 301
2.5.0 Cutthroat Flume......Page 302
3.0.0 DISCUSSIONS ON PROVER SYSTEMS AND MASTER METERS......Page 303
2.8.2 Gas Turbine Flow Meter......Page 305
3.1.2 SUBMERGED FLOW IN A WEIR......Page 306
3.1.4 SILTATION IN WEIRS......Page 307
3.1.4 Meter K Factor and Performance......Page 308
3.2.0 V-Notch Weir Details......Page 309
3.4.0 Trapezoidal or Cipoletti......Page 311
3.5.2 DESCRIPTION OF BROAD-CRESTED WEIRS......Page 312
5.2.1 Use of DP Type Meters......Page 1101
3.5.3 DESIGN BASIS FOR BROAD-CRESTED WEIRS......Page 313
4.6.0 Motor Speed Control......Page 780
4.0.0 SECONDARY INSTRUMENTS FOR OPEN-CHANNEL FLOW MEASUREMENT......Page 315
3.3.0 General Design Details......Page 316
4.1.2 STAFF GAGE......Page 322
4.2.6 Pressure Loss for Thermal Dispersion Mass Flow Meters......Page 609
4.1.4 ONLINE PRESSURE SENSOR/TRANSDUCER......Page 325
4.1.5 ULTRASONIC LEVEL SENSING SYSTEM......Page 327
4.1.6 BUBBLER TYPE LEVEL MEASUREMENT......Page 330
4.2.1 TRANSMITTER DESCRIPTION......Page 333
4.2.2 SPECIFICATION......Page 334
4.2.3 MOUNTING AND INSTALLATION......Page 335
LIST OF ABBREVIATIONS......Page 337
REFERENCES......Page 338
FURTHER READING......Page 339
1.1.0 PD Meter Working Principles......Page 341
1.2.1 Power Supply in a Current Loop......Page 1213
1.3.0 Unit Conversion for Power......Page 342
1.1.2 BELT CONVEYOR......Page 691
1.4.1 FACTORS INFLUENCING VOLUME DISPLACEMENT IN PD METERS......Page 343
1.2.1 Viscoelasticity......Page 634
1.4.3 PERFORMANCE CRITERIA FOR PD METERS......Page 345
1.5.1 MAJOR APPLICATION AREAS FOR PD METERS......Page 346
1.5.2 SELECTION GUIDELINES FOR PD METERS......Page 347
1.7.1 CALIBRATION ISSUES FOR PD METERS......Page 350
1.7.4 SOME IMPORTANT PD METER ISSUES......Page 352
1.9.0 Custody Transfer Applications......Page 353
C......Page 1241
2.1.3 SIZING AND SELECTION OF NUTATING DISCS......Page 354
2.1.4 PRESSURE DROP......Page 355
2.1.4 Multivariable Transmitters......Page 356
2.4.1 FLOW METER IN GRAVITY PRESSURE INSTALLATION......Page 357
2.5.2 General Installation Discussions......Page 572
2.4.3 FLOW METER IN UTILITY APPLICATIONS......Page 359
2.0.1 Risk Frequency......Page 1173
3.1.2 DESCRIPTIVE DETAILS FOR OVAL GEAR METERS......Page 360
3.1.3 PRESSURE LOSS......Page 361
3.2.1 MAJOR FEATURES AND ADVANTAGES......Page 362
3.3.1 ELECTRICAL SECTION......Page 363
3.4.1 METER SIZE AND RANGE SELECTION......Page 364
3.4.2 METER PERFORMANCE AND K FACTOR......Page 365
3.5.0 Specification of Oval Gear Meters......Page 366
3.6.1 METER ORIENTATION......Page 368
2.3.1 THEORY OF OPERATION FOR IMPACT SCALE SOLID FLOW METERS......Page 716
4.1.2 DESCRIPTIVE DETAILS OF ROTATING PISTON METERS......Page 370
4.1.3 PRESSURE LOSS IN THE METER......Page 372
3.6.3 Specification......Page 459
4.3.0 General Design Details......Page 373
6.3.2 Major Flow Instruments Used......Page 374
7.2.0 Constant Mass Flow Controllers......Page 1060
4.4.2 OVERALL PERFORMANCE......Page 375
6.5.0 Specification of Noncontact Type Nucleonic Solid Flow Measuring Systems......Page 793
5.0.0 ROTATING VANE METERS......Page 377
7.3.1 CAPACITANCE TYPE SOLID FLOW MEASUREMENT......Page 797
5.1.2 DESCRIPTIVE DETAILS OF ROTATING VANE PD METERS......Page 378
5.2.0 Features and Applications of Rotating Vane PD Meters......Page 380
5.3.1 PHYSICAL/MECHANICAL DESIGN DETAILS......Page 381
5.4.1 METER SIZES FOR SELECTION......Page 382
5.5.0 Specification of Rotating Vane PD Meters......Page 383
5.6.0 Installation Details......Page 384
1.1.0 Discussions on Mechanical Equipment for Solid Flow......Page 688
6.1.1 PRINCIPLES OF OPERATION......Page 385
6.1.2 DESCRIPTIVE DETAILS OF ROTATING VANE PD METERS......Page 386
9.2.0 Speed Sensor......Page 387
6.5.0 Specification of Reciprocating Piston PD Meters......Page 388
6.6.0 Installation Details......Page 390
7.1.2 OPERATING CONDITIONS AND AVAILABLE SIZES OF LOBED IMPELLER PD METERS......Page 391
5.1.2 METER DESCRIPTION......Page 783
7.2.1 OPERATIONAL DETAILS......Page 392
7.3.1 OPERATING PRINCIPLES OF GEAR PD METERS......Page 393
7.4.2 BRIEF SPECIFICATION OF ROTARY METERS......Page 394
6.3.1 RADIATION SOURCE......Page 790
8.3.0 Shutoff Valve......Page 395
8.6.0 Local and Remote Register......Page 396
9.1.0 Hall Effect Sensing......Page 397
9.2.0 Hall Effect Flow Sensors......Page 399
LIST OF ABBREVIATIONS......Page 400
6.0.0 NONCONTACT TYPE NUCLEONIC SOLID FLOW METERS......Page 401
2.1.0 Theoretical Background of Hall Effect......Page 403
1.3.0 Oscillating Type Flow Meters......Page 404
3.2.0 Enclosure Classes......Page 405
2.1.2 Description of a Turbine Meter......Page 406
2.1.3 Pickup Types......Page 408
1.1.4 DUST Cloud Measurement......Page 410
2.1.6 Brief Technical Details for Gas Turbine Flow Meter......Page 412
2.2.2 Application of TFMs......Page 413
2.3.2 Rotor Assembly and Some Other Meter Internals......Page 414
2.3.3 Turbine Flow Meter Bearings......Page 415
2.5.6 CORIOLIS METER DISCUSSIONS......Page 1164
3.2.1 PIPE PROVERS......Page 1075
2.4.2 Meter Sizing and Flow Range......Page 417
2.3.5 Foreign Materials and Medium Quality......Page 419
2.1.2 PHASE FRACTION MEASUREMENT......Page 421
2.7.1 Installation Discussions......Page 422
2.3.1 Air Flue Gas Flow Measurements......Page 423
2.8.1 Insertion Type Turbine Flow Meter......Page 424
2.8.3 Double-Rotor Turbine Flow Meter......Page 428
2.9.0 Other Inferential Flow Meters......Page 431
2.1.3 FEATURES AND APPLICATION DETAILS......Page 709
2.9.2 Woltman Flow Meter......Page 432
3.0.0 Vortex and Swirl Type Flow Meters......Page 433
4.0.0 Foundation Fieldbus......Page 1228
4.0.0 Oil and Gas Applications......Page 435
3.0.4 Swirl/Vortex Precision Meter......Page 436
4.0.0 SIF, SIL, and SIS......Page 1183
3.1.1 Principles of Operation......Page 438
3.1.2 Description of Vortex Meter......Page 439
3.1.3 Bluff Body and Sensor Description......Page 441
4.2.2 Thermal Dispersion Mass Flow Meter Characteristics Issues......Page 446
4.2.0 Multiphase Flow Meter Specification Issues......Page 923
3.2.2 Application Area......Page 447
3.3.1 Sensor and Converter Design......Page 448
3.3.3 Flow Range and Sizing......Page 452
4.5.3 Wedge Flow Element in Alumina Plant-Red Mud......Page 665
7.4.2 Specification of Variable Orifice Flow Switches......Page 614
5.5.1 Element Orientation and Alignment......Page 675
3.5.1 Mounting of Vortex/Swirl Meters......Page 456
3.5.2 Meter Installation Discussions......Page 457
4.1.0 Basic Theory of Measurement......Page 460
4.2.1 Meter Categories, Features and Applications......Page 463
4.1.1 DISCUSSIONS ON OPERATING PRINCIPLES......Page 464
4.3.1 Range Limits and Accuracy......Page 465
5.4.0 Specification Details for Wedge Elements......Page 673
4.4.1 Range Limits and Accuracy......Page 466
5.0.1 Basic Theory of Measurement......Page 467
5.0.2 Parameters and Constraints......Page 468
5.0.3 Induced Voltage Measurement......Page 469
5.0.4 Magnetic Field Characteristics......Page 470
5.0.6 Noise Issues......Page 472
5.1.0 Descriptive Details of Electromagnetic Flow Meters......Page 473
3.6.8 MAGNETIC RESONANCE IMAGING......Page 917
4.2.4 BELT SCALE/BELT WEIGHER SELECTION GUIDE......Page 761
5.1.3 Operating, Environmental Parameters, and Protection for Flow Meters......Page 474
5.1.4 Meter K Factor and Performance Data......Page 475
5.2.1 Features of Electromagnetic Flow Meters......Page 477
8.0.0 Signal Processing in Smart Transducers and Converters......Page 1061
5.3.0 Part Details and Design Aspects of Electromagnetic Flow Meters......Page 478
5.3.1 Electrodes and Associated Design Issues......Page 479
5.3.2 Magnetic Field and Field Excitations Discussions......Page 480
5.3.3 Electromagnetic Flow Meter Grounding......Page 483
5.3.4 Noise and Electronic Design Improvements......Page 484
5.3.5 Secondary Device (Transmitter)......Page 485
5.3.6 Flow Ranges, Meter Sizing, and Selection......Page 488
5.3.7 Material Selection Guide......Page 490
5.4.0 Specifications of Electromagnetic Flow Meters......Page 491
5.5.0 Installation Discussions......Page 492
5.7.0 Insertion Type Electromagnetic Flow Meters......Page 495
6.0.0 Ultrasonic Flow Meters (USFMs)......Page 498
6.0.1 Basic Theory of Operation of Doppler Type USFMs......Page 499
6.1.1 Descriptive Details of Doppler USFMs......Page 501
6.1.2 Descriptive Details on Transit Time USFMs......Page 502
6.1.3 Description of Other Types of USFM......Page 504
6.1.4 Transducers......Page 505
6.1.5 Secondary Electronics for USFMs......Page 508
6.2.0 Meter Performance and Associated Factors......Page 510
6.2.2 Installation Effects......Page 511
6.3.1 Features of USFMs......Page 512
6.3.2 Application Area of USFMs......Page 513
6.4.1 Specification of Doppler Type USFMs......Page 514
6.4.2 Specification of Transit Time Type USFMs......Page 516
6.5.0 Inline USFM......Page 518
6.5.2 Components of Inline USFMs......Page 519
6.5.4 Minimum Back Pressure for Inline USFM in Liquid Applications......Page 520
6.6.0 USFM Installation Discussions......Page 521
6.7.0 Discussion on Meter Selection Process (Within the Same Meter Category)......Page 522
6.7.2 Requirements and Constraints......Page 523
6.7.3 Selection Discussions......Page 524
6.9.0 Concluding Discussions and Recent Developments......Page 525
7.1.1 Cup Type Mechanical Anemometer......Page 526
7.1.2 Vane Type Mechanical Anemometer......Page 527
7.2.1 Features of Thermal Hotwire Anemometers (HWA)......Page 528
7.2.2 Descriptive Details: Hotwire Anemometers (HWA)......Page 529
7.3.0 Doppler Effect Anemometer (Anemometry)......Page 531
7.3.2 Laser Doppler Anemometry Principles......Page 532
7.3.4 Specification for Laser Doppler Anemometers......Page 534
8.1.2 Target Meter With Deflection......Page 535
8.2.1 Features of Target Flow Meters......Page 536
8.3.1 Descriptive Details of the Target Variable Area Flow Meter......Page 537
8.4.1 Specification for Target Flow Meters......Page 538
8.4.2 Specification for Target Variable Area Flow Meters [45,46]......Page 539
9.1.1 Volumetric Flow......Page 540
9.2.1 Features......Page 541
9.3.0 System Specification [49]......Page 543
List of Abbreviations......Page 544
References......Page 545
Further Reading......Page 546
1.0.0 Introduction and General Discussions......Page 547
2.0.0 Coriolis Mass Flow Measurement......Page 548
1.1.1 Installation Problems and Solutions......Page 549
2.1.2 Theory of Operation of Coriolis Flow Mass Flow Meter......Page 552
2.1.3 Descriptive Details of Coriolis Meter and Design Issues......Page 554
2.1.4 Coriolis Meter Characteristics......Page 559
2.1.5 Operating and Environmental Conditions......Page 561
2.4.5 PROVING LIQUID ULTRASONIC FLOW METERS......Page 562
2.1.8 Materials of Construction and Process Connections......Page 564
2.1.9 Performance Data......Page 565
2.2.2 NONMETALLIC ELASTOMERIC MATERIALS......Page 566
2.3.2 Temperature Effect......Page 567
2.3.7 Other Conditions......Page 568
2.5.0 Coriolis Mass Flow Meters Installation Discussions......Page 571
2.6.1 Zero Checking and Calibration......Page 573
3.0.0 Impeller Turbine Mass Flow Measurement......Page 574
4.0.0 Thermal Mass Flow Measurement......Page 576
4.0.1 Theoretical Background of Heat Transfer Mass Flow Meters......Page 577
4.0.2 Theoretical Background of Thermal Dispersion Mass Flow Meters......Page 580
4.1.0 Capillary (Bypass Heat Transfer) Thermal Mass Flow Meters......Page 583
4.1.1 Formula Derivation for Capillary Thermal Mass Flow Meters......Page 584
4.1.2 Descriptive Details of Capillary Thermal Mass Flow Meters (TMFM)......Page 586
4.1.3 Operating Conditions and Performances of Thermal Mass Flow Meters......Page 589
4.1.5 Gas Conversion and Allowed Gases......Page 590
4.1.6 Specification of Thermal Mass Flow Meters......Page 591
4.2.1 Formula Derivation for Thermal Dispersion Mass Flow Meters......Page 593
2.3.2 DESCRIPTIVE DETAILS OF IMPACT FLOW METERS......Page 719
4.2.4 Thermal Dispersion Mass Flow Meter Design Issues......Page 603
4.2.5 Specification of Thermal Dispersion Mass Flow Meters......Page 607
3.3.3 NEUTRON ACTIVATION ANALYSIS PROCESS......Page 889
4.2.8 Installation and Adjustments for Thermal Dispersion Mass Flow Meters......Page 610
4.3.2 Limitations of Thermal Mass Flow......Page 615
4.3.4 Digital Meter Configuration......Page 616
List of Abbreviations......Page 617
Further Reading......Page 618
Preamble......Page 1169
A......Page 620
1.0.1 Fluid Classification by Rheology......Page 622
1.0.2 Discussions on Fundamental Terms in Rheology......Page 624
1.1.0 Rheology and Viscosity......Page 629
1.1.1 TERMS AND DEFINITIONS......Page 811
1.1.2 Non-Newtonian Time-Independent Viscosity......Page 631
1.1.3 Non-Newtonian Time-Dependent Viscosity......Page 633
1.2.4 Current Loop Types......Page 1214
2.1.1 Terms Frequently Used for Slurry Flow Measurement......Page 636
2.1.2 Objective and Classification of Slurry Flow......Page 637
2.2.0 Solid-Liquid Flow Regime......Page 639
2.2.2 Heterogeneous Flow......Page 640
2.3.1 Slurry Flow in a Horizontal Pipe......Page 641
3.0.1 Meter Types......Page 642
3.0.2 Meter Selection Guide for Complex and Slurry Flows......Page 644
3.1.1 DP Method in Slurry Flow......Page 646
3.1.3 Turbine Meter for Complex and Slurry Flow Measurement......Page 648
3.1.4 Electromagnetic Meter for Complex and Slurry Flow Measurement......Page 649
3.1.8 Slurry Flow Measurement and Electrical Resistance Tomography......Page 653
1.7.0 Custody Transfer Measurements and Legal Issues......Page 655
4.0.0 Instrumentation for Selected Slurry and Complex Flow Applications......Page 656
4.1.2 Ash Slurry and Limestone Flow Meter......Page 657
4.2.0 Cement Slurry Flow Measurement......Page 658
4.1.1 Different Major Flow Instruments Used in Oil and Gas......Page 1084
4.3.2 Purpose of Drilling Fluid and Types of Drilling......Page 659
4.3.3 Coriolis Meters in Drilling Operations......Page 660
4.4.0 Pulp and Paper Slurry Flow Measurement......Page 661
4.4.5 SONAR in Paper Plants......Page 663
5.3.0 PROFIBUS Configuration and Communication......Page 1233
4.5.1 Alumina Plant and Red Mud......Page 664
4.6.0 Complex Fluids in Food and Beverages......Page 666
6.2.3 Mass Flow Meters......Page 667
5.1.3 Discharge Coefficient......Page 668
5.1.4 Wedge (H/D) Ratio......Page 669
5.2.2 Operating Conditions and Flow Capacity......Page 670
5.2.3 Performance Data......Page 671
5.3.1 Special Features of Wedge Elements......Page 672
5.5.2 Instrument Connection and Transmitter Types......Page 676
7.3.3 Sonar Type Flow Metering in Aluminum Manufacturing......Page 1114
5.5.4 Mechanical Steps for Installation of Wedge Elements......Page 677
List of Abbreviations......Page 678
References......Page 679
Further Reading......Page 680
1.0.0 INTRODUCTION: AN OVERVIEW OF SOLID FLOW MEASUREMENT......Page 682
1.0.1 DISCRETE MASS DELIVERY WEIGHING SYSTEMS......Page 683
1.0.3 IN-MOTION WEIGHING SYSTEMS-DISCRETE MASS WEIGHING SYSTEM-WEIGHBRIDGES......Page 686
1.1.1 FEEDING ARRANGEMENT FOR SOLID FLOW......Page 690
1.1.3 ROTARY FEEDER......Page 692
1.1.5 DRAG CONVEYOR AND APRON FEEDER......Page 693
1.1.6 VIBRATING FEEDER AND TABLE FEEDER......Page 694
1.1.7 BUCKET CONVEYOR......Page 695
2.1.3 Link RS (EIA) 485......Page 696
1.2.0 Material Characteristics for Solid Flow......Page 697
1.2.1 FORCES AND STRESSES IN BULK SOLIDS DURING FLOW......Page 699
1.2.3 PROPERTIES FOR FLOWABILITY OF BULK SOLIDS......Page 700
1.2.4 FACTORS INFLUENCING FLOWABILITY OF FINE BULK SOLIDS......Page 701
2.1.0 Metals and Alloys......Page 1139
1.3.1 COMPARISON OF VARIOUS WEIGH FEEDER TYPES......Page 703
1.3.2 COMPARISON OF VARIOUS SOLID FLOW METERS......Page 704
1.4.2 DISCUSSIONS ON SOLID FLOW MEASUREMENT SYSTEM CHOICES......Page 705
1.4.4 MATERIAL CHARACTERISTIC AND CONSTANT PARAMETER ASSUMPTION......Page 706
2.1.1 THEORY OF OPERATION......Page 707
1.6.2 Mass Flow Rate Conversion Factors......Page 1131
2.1.5 INSTALLATION......Page 710
2.2.0 Coriolis Solid Flow Meter......Page 711
2.2.1 THEORY OF OPERATION......Page 712
2.2.3 FEATURES AND APPLICATION DETAILS......Page 713
2.2.4 SPECIFICATION OF CORIOLIS SOLID MASS FLOW METER......Page 714
2.3.0 Impact Scale Solid Flow Meter......Page 715
2.3.3 FEATURES AND APPLICATIONS OF IMPACT FLOW METERS......Page 720
2.3.4 SPECIFICATIONS OF IMPACT SCALE SOLID MASS FLOW METERS......Page 721
2.3.5 INSTALLATION AND CALIBRATION DISCUSSIONS FOR IMPACT SCALES......Page 722
3.0.0 GRAVIMETRIC FEEDER AND LOSS IN WEIGHT......Page 723
3.1.1 PRINCIPLES OF OPERATION FOR GRAVIMETRIC FEEDERS......Page 725
3.1.2 FEATURES OF GRAVIMETRIC FEEDER WITH DESCRIPTIVE DETAILS......Page 728
3.1.3 APPLICATION AREAS OF GRAVIMETRIC FEEDERS......Page 729
3.2.0 Loss-in-Weight Measurement......Page 735
3.2.1 PRINCIPLES OF OPERATION OF LOSS IN WEIGHT......Page 736
3.2.2 DESCRIPTIVE DETAILS FOR LOSS-IN-WEIGHT MEASUREMENT......Page 739
3.2.3 FEATURES AND APPLICATIONS OF LOSS-IN-WEIGHT MEASUREMENT......Page 742
3.2.4 SPECIFICATION OF LOSS-IN-WEIGHT MEASUREMENT......Page 743
3.2.5 LOSS-IN-WEIGHT MEASUREMENT WITHOUT A LOAD CELL......Page 745
4.0.0 BELT WEIGHING SYSTEM......Page 747
4.1.0 Weigh Feeder Systems......Page 748
4.1.2 DESCRIPTIVE DETAILS OF WEIGH FEEDERS......Page 749
4.1.3 FEATURES OF WEIGH FEEDER (ALSO BELT SCALE/BELT WEIGHER)......Page 753
4.1.5 SPECIFICATIONS OF WEIGH FEEDERS......Page 754
4.1.7 WEIGH FEEDER DISCUSSIONS......Page 756
4.2.1 FUNCTIONAL ASPECTS OF THE BELT SCALE/BELT WEIGHER......Page 757
4.2.2 DESCRIPTIVE DETAILS OF BELT SCALES/BELT WEIGHERS (ADDITIONAL DETAILS)......Page 758
4.2.3 SPECIFICATIONS OF BELT SCALE/BELT WEIGHERS......Page 759
4.3.0 Load Cell and Sensing Electronics......Page 762
4.3.1 DESCRIPTIVE DETAILS OF LOAD CELL MEASUREMENT......Page 765
4.3.2 LOAD CELL DISCUSSIONS......Page 768
4.3.3 LOAD CELL SPECIFICATION......Page 771
4.4.1 DESCRIPTIVE DETAILS OF SPEED SENSING......Page 773
4.4.2 SPECIFICATION OF SPEED SENSING......Page 775
4.5.1 FUNCTIONAL DETAILS OF WEIGHING ELECTRONIC INTEGRATOR AND CONTROLLER......Page 776
4.5.2 FEATURES AVAILABLE FOR WEIGHING ELECTRONIC INTEGRATORS AND CONTROLLERS......Page 777
4.5.3 DESCRIPTIVE DETAILS OF WEIGHING ELECTRONIC INTEGRATORS AND CONTROLLERS......Page 778
4.5.4 SPECIFICATION OF WEIGHING ELECTRONIC INTEGRATORS AND CONTROL SYSTEMS......Page 779
5.3.0 Specification of Microwave Solid Flow Instrument......Page 784
6.1.0 Principles of Operation for Nucleonic Mass Solid Flow Meters......Page 787
6.2.1 CONFIGURATIONS FOR SOLID FLOW MEASUREMENT IN PIPES......Page 788
6.3.0 Descriptive Details of Nucleonic Solid Flow Measuring Systems......Page 789
6.3.2 RADIATION DETECTION......Page 791
6.3.3 INTELLIGENT COMPUTING AND EVALUATION UNIT FOR NUCLEONIC FLOW METERS......Page 792
7.1.1 OPERATIONAL DETAILS OF SCREW WEIGH FEEDERS......Page 795
7.1.3 TYPICAL FEATURES OF SCREW WEIGH FEEDERS......Page 796
7.4.0 Force Flow Type Solid Weigh Meters......Page 798
8.0.0 PROCESS BATCH WEIGHER......Page 800
8.2.1 GAIN-IN-WEIGHT METHOD......Page 801
9.0.0 CONCLUDING DISCUSSIONS ON SOLID FLOW MEASURING SYSTEMS......Page 802
9.4.0 Conveyor Accessories......Page 803
LIST OF ABBREVIATIONS......Page 804
P......Page 1255
FURTHER READING......Page 806
1.0.0 INTRODUCTION: CONCEPT OF MULTIPHASE FLOW-AN OVERVIEW......Page 807
1.1.0 Fundamentals of Multiphase Flow......Page 810
1.1.3 MULTIPHASE CHARACTERISTICS AND FLOW REGIMES......Page 815
1.2.0 Two-Phase Flow Measurement......Page 823
1.2.1 UNDERSTANDING TWO-PHASE FLOW......Page 824
1.2.2 TYPES OF TWO-PHASE FLOW PHENOMENA......Page 826
1.2.3 VOID FRACTION AND VOID FRACTION MEASUREMENT IN TWO-PHASE FLOW......Page 829
1.2.4 TWO-PHASE FLOW SENSING AND SENSORS (CORIOLIS MASS FLOW, US, PIV, AND LDA)......Page 838
1.2.5 WET GAS METERING......Page 845
1.2.6 WATER CUT METERING......Page 850
1.3.0 Multiphase Flow Metering Philosophy and Well Testing......Page 851
1.3.2 MULTIPHASE FLOW COMPUTATIONAL REQUIREMENTS......Page 852
1.3.3 MULTIPHASE METER IN OIL AND GAS......Page 853
1.3.4 WELL MONITORING......Page 854
1.3.5 WELL TESTING......Page 856
2.0.0 MULTIPHASE FLOW MEASUREMENT ESTIMATION AND TYPES......Page 859
2.1.1 PHASE FLOW OR VELOCITY MEASUREMENT......Page 860
3.2.0 IEC 61511 Safety Lifecycle......Page 863
2.2.1 DP METHOD (DP ELEMENTS: VENTURI, V CONE, ORIFICE)......Page 864
2.2.2 NON-DP WET GAS MEASUREMENTS......Page 865
2.2.3 WET GAS FLOW METER (COMBINATION)......Page 866
2.3.0 Water Cut Meter......Page 868
2.3.1 WATER CUT METER WORKING PRINCIPLES......Page 869
2.3.3 WATER CUT METER SPECIFICATION......Page 871
2.3.4 WATER CUT METER DISCUSSIONS......Page 872
2.4.2 BASIC PROCESS OF A VIRTUAL METERING SYSTEM......Page 873
2.4.3 ANALYSIS OF VIRTUAL METERING SYSTEM RESULTS......Page 875
3.1.2 Flange Face Types......Page 1151
3.3.0 Flange Dimensional Details......Page 878
3.2.0 Microwave Measurements in Multiphase......Page 879
3.2.1 ADVANTAGES AND DISADVANTAGES OF MICROWAVE MEASUREMENT TECHNOLOGY......Page 880
3.2.2 THEORETICAL BACKGROUND FOR MEASUREMENT......Page 881
3.2.3 RESONATOR TYPE SENSING......Page 883
3.2.4 CHANGE OF FREQUENCY TYPE MEASUREMENT......Page 884
3.2.5 ABSORPTION TYPE MEASUREMENT......Page 885
3.3.1 GAMMA RAY ABSORPTION METERING......Page 886
3.3.2 NEUTRON ACTIVATION ANALYSIS-BASIC DEFINITIONS OF TERMS......Page 888
3.3.4 PROMPT GAMMA-RAY NEUTRON ACTIVATION ANALYSIS (PGNAA)......Page 891
3.3.6 NAA AND OIL EXPLORATION......Page 892
3.4.1 WIRE MESH TYPE MEASUREMENT FUNDAMENTALS......Page 893
3.4.2 ELECTRICAL MEASUREMENT OF CONDUCTIVITY TYPE WIRE MESH......Page 895
3.4.3 ELECTRICAL MEASUREMENT OF CAPACITANCE TYPE WIRE MESH......Page 896
3.4.5 ELECTRICAL IMPEDANCE METHOD (GENERAL: LOCAL MEASUREMENTS)......Page 898
3.4.6 SOME RECENT DEVELOPMENTAL WORK IN ELECTRICAL IMPEDANCE MEASUREMENTS......Page 899
3.5.0 Needle Probe (Local Void Fraction)......Page 901
3.5.1 OPTICAL TYPE NEEDLE PROBE......Page 903
3.5.2 THERMAL TYPE NEEDLE PROBE (COMBINED)......Page 904
3.5.3 ELECTRICAL TYPE NEEDLE PROBE (COMBINED)......Page 906
4.5.0 Coriolis Mass Flow Meter in Cryogenic Applications......Page 909
3.6.1 GENERAL TOMOGRAPHY PROCESS......Page 910
3.6.2 X-RAY TOMOGRAPHY: X-RAY CT......Page 911
3.6.3 GAMMA RAY TOMOGRAPHY......Page 912
3.6.4 NEUTRON/POSITRON TOMOGRAPHY......Page 913
3.6.5 ELECTRICAL IMPEDANCE TOMOGRAPHY......Page 914
8.2.3 Mass Flow Measurement of Cement for Reduced Chromatic Concrete......Page 1118
3.7.1 BACKGROUND THEORY FOR MR RESONANCE MEASUREMENT......Page 918
3.8.1 PRINCIPLES OF OPERATION......Page 920
4.1.1 GENERAL REQUIREMENTS AND EXTERNAL CONDITIONS FOR METER SELECTION......Page 922
4.2.3 OUTPUT SPECIFICATION REQUIREMENTS......Page 924
5.2.0 Brief Multiphase Commissioning Discussions......Page 925
6.0.0 MULTIPHASE FLOW METERING-TESTING AND CALIBRATION......Page 926
4.0.0 Ingress Protection......Page 927
REFERENCES......Page 928
FURTHER READING......Page 930
1.0.0 Introduction......Page 931
2.0.0 Hall Effect Sensing and Flow Measurement......Page 932
2.2.1 Analog Type Sensor......Page 934
2.2.2 Digital Type Sensor......Page 935
2.3.2 BIPOLAR Magnetic System......Page 936
3.1.1 Magnetic Pickup Working Principles......Page 940
3.1.3 Installation of Magnetic Pickup......Page 941
1.3.3 Installation Effect on Ultrasonic Flow Meter......Page 942
4.0.0 Cryogenic Flow Measurement......Page 943
4.1.1 Constraints of Various Cryogenic Flow Meter Types......Page 944
4.1.2 Selection of Flow Meter in Cryogenic Applications......Page 945
5.2.0 Protection Standards With Comparison......Page 946
4.2.0 Instruments Used in Production Oil Separators......Page 947
4.6.0 Ultrasonic Flow Meter in Cryogenic Applications......Page 948
4.7.0 Processing Electronics in Cryogenic Applications......Page 949
5.1.3 Specification for Direct-Flow Gages......Page 952
5.2.0 Sight Flow Indicator......Page 953
5.2.4 Sight Flow Indicator With Spinner......Page 954
5.1.0 Major Challenges and Aims of Flow Measurement......Page 1100
6.1.1 General Design Details for Water Meters......Page 956
6.1.2 Domestic Water Flow Meters......Page 957
6.1.3 Irrigation, Agriculture and Fertilizer Water Flow Meter......Page 959
6.2.1 Mechanical Oil Flow Meters......Page 961
5.2.3 Use of Ultrasonic Flow Meters......Page 963
3.0.0 Safety Lifecycle......Page 1179
7.0.1 Definitions and Terminologies With Explanations......Page 964
7.0.2 Flow Switch Types......Page 967
7.1.0 General Requirements of Flow Switches With Explanations......Page 968
7.2.1 Descriptive Details of Paddle Type Flow/No-Flow Switches......Page 969
7.2.3 Specifications of Paddle (Vane) Type Flow Switches......Page 970
7.3.1 In-Line (Piston) Flow Switch......Page 971
7.3.2 DP Type Flow Switch......Page 973
7.4.1 Working Principle of Variable Orifice Flow Switch......Page 974
7.5.0 Thermal Dispersion Type Flow Switch (Monitor)......Page 976
7.5.1 Theoretical Background of Thermal Dispersion Flow Monitors......Page 977
7.5.2 Description of Thermal Type Flow Switches......Page 978
7.6.0 Discussions on Miscellaneous Flow Switches......Page 979
7.7.0 Discussions on Solid (Bulk) Flow Monitors......Page 980
7.7.1 Microwave Type Solid Flow Monitors......Page 981
7.7.2 Electric Charge Type Flow Monitors......Page 984
List of Abbreviations......Page 986
Further Reading......Page 987
Preamble......Page 988
1.0.0 Flow Conditioning......Page 989
1.1.0 Flow Straighteners......Page 990
1.1.1 Tube Bundle Flow Straightener......Page 991
1.2.0 Flow Conditioners (True Flow Conditioners)......Page 992
2.1.2 Cast Iron and Carbon Steel......Page 993
1.3.0 Discussions on Flow Conditioning......Page 995
1.3.2 Swirl Effect on Some Selected Metering Types (Volume Flow)......Page 996
1.3.4 Some API Requirements......Page 998
2.0.0 Flow Transmitters (DPT and MVT) and Converters......Page 999
2.1.0 Basic Transmitter Theory, Technologies and Selection......Page 1000
2.1.1 Signal Transmissions and Smart Transmitters......Page 1001
2.1.2 Transmitter Measurement Loop......Page 1002
2.1.3 Transmitter Components and Accessories......Page 1004
2.1.1 Pipe Specifications......Page 1149
2.2.1 Wetted Parts......Page 1006
2.3.1 Accuracy and Its Significance......Page 1007
2.3.2 Other Miscellaneous Effects and Responses......Page 1008
2.3.2 Mill Air Flow Measurements and Control......Page 1009
2.4.2 Specification of Multivariable Transmitters......Page 1010
2.5.0 Mounting and Installation of DPTs and MVTs......Page 1011
3.1.1 Working Principles and Types of Peristaltic Pump......Page 1013
4.2.3 Link Device, Gateway and Communication Stack (Link Active Scheduler)......Page 1231
3.1.3 Parts and Technical Details of Peristaltic Metering Pumps......Page 1015
3.2.0 Piston-Operated (With/Without Diaphragm) Metering Pumps......Page 1016
3.2.1 Description of a Direct Piston-Operated Metering Pump (No Diaphragm)......Page 1017
3.2.3 Technical Data......Page 1019
3.2.5 General Discussions on Diaphragm Pumps......Page 1020
3.3.0 Metering Pump in Dosing Control (Application Example)......Page 1023
4.0.0 Energy Flow Computation and Metering......Page 1025
4.1.0 General Discussions on Energy Flow and Its Requirements......Page 1027
4.2.1 Important Terms for Fuel Gas in Combustion......Page 1030
4.2.2 Use of WI for Heat Flow......Page 1031
4.2.5 Energy Flow/BTU Meter Discussions and Specification......Page 1032
4.3.1 Boiler Efficiency Calculation With Energy Computation Unit......Page 1034
4.3.2 Boiler Efficiency Formulation and Measurement Points......Page 1037
5.1.1 Definition of a Flow Computer......Page 1038
5.1.3 Density Computation and Variation Issues for Compressible Fluids......Page 1039
5.2.1 Description of Flow Computers......Page 1040
5.2.2 Features of Flow Computers......Page 1041
7.2.2 Electromagnetic Flow Meter Applications......Page 1042
5.3.0 Various Display Units and the Operator Interface......Page 1043
6.1.0 Flow in Batch Control......Page 1044
6.1.1 Functional Details of Flow in a Batch Process......Page 1046
6.1.2 Flow Meters in Batch Process Operations......Page 1048
6.1.3 Features of Batch Controllers......Page 1050
6.1.4 Specification for Batch Controllers......Page 1051
6.2.0 Filling Machines......Page 1052
6.2.1 Standard Issues Related to Filling Machines......Page 1053
6.2.3 Description of Typical Filling Machines and Systems......Page 1054
6.3.1 Volumetric Dispensing......Page 1056
6.3.2 Gravimetric Dispensing......Page 1057
7.1.1 Constant Volume Flow Controller in Gas Applications......Page 1058
8.1.0 Standard Transmitters......Page 1062
8.2.0 Smart Converters......Page 1064
References......Page 1065
Further Reading......Page 1066
Preamble......Page 1067
1.1.0 Issues Related to Industrial Dusts......Page 1068
1.1.2 Use of Purge Rotameters and Other Types......Page 1069
1.1.3 Other Gas Flow Meter Types......Page 1070
1.2.1 Diagnostic Features in Ultrasonic Flow Meters......Page 1071
1.2.2 Fouling Effect on Ultrasonic Flow Meters......Page 1072
1.2.3 Vortex Meter and Associated Issues......Page 1073
2.2.0 ATEX Method of Protection......Page 1141
1.3.1 Profile Distortion......Page 1074
2.1.1 Main Steam Flow Measurement......Page 1076
3.2.3 Field Intrinsically Safe Concept (FISCO)......Page 1078
2.2.2 Conventional Coal Flow Measurement and Controls......Page 1079
2.2.3 Pulverized Coal Flow Measurement......Page 1080
2.3.0 Air and Flue Gas Flow Measurement......Page 1081
2.4.0 Flow Meters for Abrasive Fluid Handling in a Flue Gas Desulfurization Plant......Page 1082
D......Page 1083
4.1.2 Use of Instruments at Different Stages in the Oil and Gas Process......Page 1086
4.3.0 Flow Metering Standards......Page 1088
4.4.1 Gas Metering System (Station)......Page 1094
4.4.2 Liquid Measuring System (Station)......Page 1095
4.5.1 Advantages of USFM for Leak Detection......Page 1096
4.5.2 Descriptive Details of the Leak Detection System......Page 1097
4.7.0 Petrochemical Application......Page 1099
2.1.0 Risk Analysis and Assessment......Page 1174
5.2.2 Use of Magnetic Flow Meters......Page 1102
5.2.4 Use of Vortex......Page 1103
5.2.6 Sonar Flow Meters in Pulp and Paper Plants......Page 1104
6.1.0 Instrument Types Used in Pharmaceutical, Food, and Beverage Industries......Page 1105
6.2.2 Turbine Flow Meter Applications......Page 1106
6.3.1 General Process Requirements in Food and Beverage Industries......Page 1107
7.1.1 Integrated Steel Plant Process Outline......Page 1109
7.1.2 Aluminum Production Process Outline......Page 1110
7.1.3 Coal Mining and Methane Recovery Process......Page 1111
7.2.1 DP Type Flow Metering......Page 1112
7.4.1 Methane Gas Flow Measurement......Page 1115
8.1.0 Brief Cement Making Process......Page 1116
9.1.2 Flow Meter Types and Selections......Page 1120
9.2.0 Energy Consumption in Biogas......Page 1121
9.4.0 Flow Measurements in Breweries......Page 1122
9.4.2 Flow Metering in the Brewing Process......Page 1123
List of Abbreviations......Page 1125
References......Page 1126
Further Reading......Page 1127
1.1.1 Explanation of Pressure and Various Definitions......Page 1128
1.3.1 Volume Conversion Factor......Page 1129
1.4.2 Density Specific Gravity of a Few Selected Materials......Page 1130
3.2.2 Implementation Part of IEC 61511......Page 1182
1.0.1 Explosion Triangle......Page 1189
1.0.2 Range of Explosion......Page 1190
3.2.0 Flowability for Solid Flows......Page 1135
2.1.3 Hastelloy Types......Page 1140
3.2.0 Differential Pressure Transmitter......Page 1142
4.0.0 Material Compatibility......Page 1143
Further Reading......Page 1146
1.2.0 Temperature Class......Page 1147
1.4.0 Unit Conversion for Energy......Page 1148
2.1.2 Tube Specification......Page 1150
2.4.3 APPLICATION AREAS......Page 1153
4.0.0 Gasket System......Page 1155
1.1.0 Explanation of Custody Transfer......Page 1156
1.3.0 Measuring System for Custody Transfer......Page 1157
1.5.0 Role of AGA and API in Custody Transfer Metering......Page 1158
1.6.0 Meter Selection for Custody Transfer Metering......Page 1159
2.2.0 Positive Displacement (PD) Type Flow Metering......Page 1160
1.1.1 Class Division Classifications......Page 1161
2.4.1 PRINCIPLES OF OPERATIONS......Page 1162
2.5.1 PRINCIPLES OF OPERATION......Page 1163
3.2.0 Prover Types......Page 1166
3.3.0 Proving Conditions......Page 1167
FURTHER READING......Page 1168
1.1.0 Definitions and Explanations of a Few Related Terms......Page 1170
1.2.0 Discussions on BPCS and SIS......Page 1172
2.1.1 Risk Register......Page 1175
2.1.2 Risk Matrix......Page 1177
4.1.1 SIL Categories......Page 1184
4.2.0 SIL Determination Techniques......Page 1185
List of Abbreviations......Page 1187
1.0.3 Components for Explosion......Page 1191
1.1.0 Electrical Area Classification......Page 1193
1.1.2 Zone System-ATEX Directive......Page 1195
2.1.0 NFPA Method of Protection......Page 1197
3.1.0 Explosion Protection Principles......Page 1200
3.3.0 Intrinsic Safety (IS)......Page 1203
5.1.0 Enclosure Markings......Page 1207
. List of Abbreviations......Page 1210
References......Page 1211
1.1.1 Current Loop and Selection for 4-20mADC......Page 1212
1.3.0 Other Hardwire Signal Types......Page 1215
2.1.2 Link RS (EIA) 422......Page 1216
2.2.0 MODBUS Protocol......Page 1217
2.2.1 Transaction Methodology......Page 1218
2.2.2 Implementation Methods......Page 1219
2.3.1 HART Protocol Features......Page 1220
2.3.2 HART Protocol Characteristics......Page 1221
2.3.3 WIRELESS HART PROTOCOL......Page 1222
3.0.0 Fieldbus System and Safe Fieldbus......Page 1223
3.2.1 IS Barriers in Fieldbus......Page 1224
3.2.6 Fieldbus Nonincendive Concept (FNICO)......Page 1226
4.2.2 Technical Description of H1 Bus......Page 1229
5.2.0 PROFIBUS Structure......Page 1232
5.3.3 Networking......Page 1235
5.4.0 PROFINET......Page 1236
. List of Abbreviations......Page 1238
References......Page 1239
E......Page 1245
F......Page 1246
H......Page 1249
I......Page 1250
L......Page 1251
M......Page 1252
N......Page 1254
R......Page 1258
S......Page 1259
T......Page 1261
V......Page 1263
W......Page 1264
Z......Page 1265
Back Cover......Page 1266