Phytoremediation: Management of Environmental Contaminants, Volume 7

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The accumulation of large amounts of contaminants occurs in the environment due to industrialization and various other anthropogenic activities. Contaminants ultimately affect human health worldwide. Organic, inorganic, and radioactive substances are the prevalent forms of environmental contaminants and their complete remediation in soils and sediments is rather a difficult task. Concerns of their toxicities led to the emphasis on development of effective techniques to assess the presence and mobility of contaminants in air, water, and soil. Furthermore, the ever-increasing concentration of toxic pollutants in the environment is considered a serious threat to plant, animal, human, and environmental health.
Many technologies are in use to clean and eliminate hazardous contaminants from the environment; however, these technologies can be costly, labor intensive, and often distressing to the general public. Phytoremediation is a simple, cost effective, environmentally friendly and fast-emerging new technology for eliminating toxic contaminants from different environments. Phytoremediation refers to the natural ability of certain plants and their associated microbiome (including hyper-accumulators or bio-accumulators) to remove, degrade, or render contaminants harmless. Through this technique, certain species of plants flourish by accumulating contaminants present in the environment. The unique and selective uptake capabilities of plant root and shoot systems, effective translocation, bioaccumulation, and contaminant degradation capabilities of the accumulator plants are utilized in phytoremediation techniques. Phytotechnologies involving the use of plants for contaminant removal gained importance during the last two decades and phytoremediation technology became an effective tool for environmental detoxification because of plants ability to accumulate the contaminants at very high concentrations.
Phytoremediation strategies can remove, degrade, or stabilize inorganic and organic contaminants entering a multitude of ecosystems using green plants and their associated microbial communities. The development and use of phytotechnologies continues to move forward at a steady pace. Researchers recognize the potential of phytoremediation to offer a green, cost effective, eco-friendly and feasible application to address some of the world’s many environmental challenges. This book provides significant information to add to the previous volumes published on the topic and can serve as the foundation for the development of new applications that feature the integration of modern research discoveries into new methods to remediate contaminated ecosystems. Moreover, this volume brings recent and established knowledge on different aspects of phytoremediation and nano-phytoremediation, providing this information in a single source that offers a cutting-edge synthesis of scientific and experiential knowledge on polluted environments that is useful for policy makers, practitioners and scientists, and engineers.
Phytoremediation: Management of Environmental Contaminants, Volume 7 highlights the various prospects that are involved in current global phytoremediation research. This book delivers a content-rich source to the reader and can act as a platform for further research studies. It should meet the needs of all researchers working in, or have an interest in this particular field.

Author(s): Lee Newman, Abid Ali Ansari, Sarvajeet Singh Gill, M. Naeem, Ritu Gill
Publisher: Springer
Year: 2023

Language: English
Pages: 619
City: Cham

Foreword
Preface
Contents
Contributors
Part I: Overview of Current Phytotechnology & Phytoremediation Applications
Chapter 1: Phytoremediation and Management of Environmental Contaminants: An Overview
1.1 Introduction
1.2 Phytoremediation Technology
1.3 Phytodegradation
1.4 Phytoextraction
1.5 Phytostabilization or Phytoimmobilization
1.6 Phytovolatilization
1.7 Rhizodegradation
1.8 Rhizofiltration
1.9 Conclusions and Future Perspectives
References
Chapter 2: Phytoremediation and Contaminants
2.1 Introduction
2.2 Phytoremediation
2.3 Phytoremediation in Water and Wastewater
2.4 Phytoremediation in Soil
2.5 Phytoremediation in Air
2.6 Genetic and Phytoremediation
2.7 Conclusions
References
Chapter 3: Phytoremediation by Wild Weeds: A Natural Asset
3.1 Introduction
3.2 Phytoremediation and Its Techniques
3.3 Type of Plant Responses Against Metal Tolerance
3.4 Review of Phytoremediation Capability of Some Wild Weeds
3.5 Role of Heavy Metal Tolerance Genes
3.6 Conclusion
References
Chapter 4: Phytoremediation: Sustainable and Organic Technology for the Removal of Heavy Metal Contaminants
4.1 Introduction
4.2 Phytoremediation to Improve the Quality of Air
4.3 Phytoremediation to Improve the Quality of Water
4.4 Phytoremediation to Improve the Quality of Soil
4.5 Results and Discussion
4.6 Conclusions
References
Chapter 5: Structure and Function of Heavy Metal Transporting ATPases in Brassica Species
5.1 Introduction
5.2 Metal Hyperaccumulator Plants for Phytoremediation
5.3 Heavy Metal ATPases in Metal Transport
5.4 Genomic Structure of Metal ATPases Identified from Different Plant Species in Brassicaceae
5.5 Motif Composition of the HMA Proteins in Plant Species in Brassicaceae
5.6 3D Structure Prediction and Validation of HMA Transporters
5.7 Conclusions
References
Chapter 6: Bioformulations for Sustainable Phytoremediation of Heavy Metal-Polluted Soil
6.1 Introduction
6.2 Bioremediation of Heavy Metal-Polluted Soils
6.3 Phytoremediation of Heavy Metal-Polluted Soils
6.3.1 Phytoextraction/Phytoaccumulation
6.3.2 Phytostimulation
6.3.3 Phytostabilization
6.3.4 Phytovolatilization
6.3.5 Phytodegradation
6.3.6 Phytofiltration/Rhizofiltration
6.3.7 Rhizoremediation
6.4 Microorganisms to Enhance Phytoremediation of Polluted Soil
6.4.1 Enhanced Metal Availability in Soil for Phytoextraction
6.4.2 Improving Plant Uptake of Heavy Metals to Augment Phytoextraction
6.5 Concept of Plant Growth Promotor Bioformulations
6.6 Biofertilizers as Bioformulations
6.7 Plant Growth Promoting Microbes
6.7.1 Plant Growth Promoting Rhizobacteria (PGPR)
6.7.1.1 Role of PGPR to Boost Plant Growth Under Abiotic Stress
6.7.2 Plant Growth Promoting Fungi (PGPF)
6.8 Techniques for Improving the Manufacturing of Bioformulations
6.8.1 Solid Formulation
6.8.2 Liquid Formulation
6.8.3 Metabolite Formulation
6.8.4 Polymeric Formulation
6.9 Role of Plant–Microbial–Metal Associations in Phytoremediation
6.9.1 Metal Detoxification
6.9.2 Biosorption and Bioaccumulation
6.9.3 Bioleaching
6.9.4 Metal Mobilization
6.9.5 Metal Immobilization
6.10 Plant Mechanisms for Metal Detoxification
6.11 Conclusions
References
Part II: Planning and Engineering Applications to Phytoremediation
Chapter 7: Application of Electroremediation Coupled with Phytoremediation Techniques for the Removal of Trace Metals in Sewage Sludge
7.1 Introduction
7.2 Sewage Sludge and Its Characteristics
7.3 Potentiality of Land Application of Sewage Sludge
7.4 Consequences of Sewage Sludge Application on Land
7.5 Soil Remediation Techniques
7.5.1 Heat Treatment
7.5.2 Ion Exchange Treatment
7.5.3 Use of Chelating Agents
7.5.4 Use of Basic Compounds
7.5.5 Use of Aluminosilicate Materials
7.5.6 Composting
7.5.7 Biosurfactant Application
7.5.8 Bioleaching
7.5.9 Phytoremediation
7.5.10 Electroremediation
7.6 Scope of Electroremediation
7.7 Scope of Coupled Technique at Laboratory Scale
7.8 Advantages
7.9 Limitations
7.10 Conclusions
References
Part III: Phytoremediation Applications for Contaminated Water and Soil
Chapter 8: Phytoremediation of Heavy Metals by Trapa natans in Hokersar Wetland, a Ramsar Site of Kashmir Himalayas
8.1 Introduction
8.2 Materials and Methods
8.2.1 Study Area
8.2.2 Study Species
8.2.3 Sampling
8.2.4 Chemical Analysis
8.2.4.1 Data Analysis
8.3 Results and Discussion
References
Part IV: Phytoremediation Using Microbial Assemblages in Water and Soil
Chapter 9: Spinoffs of Phyoremediation and/or Microorganism Consortium in Soil, Sediment, and Water Treatments and Improvement: Study of Specific Cases and Its Socioeconomic and Environmental Advantages
9.1 Introduction
9.2 Phytoremediation
9.2.1 Definition of Phytoremediation
9.2.2 The Different Phytoremediation Processes (by Plants)
9.2.2.1 Phytoextraction
9.2.2.2 Phytostabilization
9.2.2.3 Phytodegradation
9.2.2.4 Phytovolatilization
9.2.2.5 Rhizofiltration
9.2.3 Phytoremediation by Microorganisms: Phytoremediation Wastewater by Microalgae (Study Case of Urban Wastewater)
9.2.3.1 Bioenergetic Benefits: Valorization of Fatty Acids Produced by Phytoremediation in Biodiesel
9.2.3.2 Environmental Impact and Agricultural Impact
9.2.3.2.1 Environmental Benefits
9.2.3.2.2 Advantage of Agronomy
9.3 Biological Treatment of Industrial Wastewater
9.3.1 Biological Treatment of Industrial Wastewater [Case Study of Olive Mill Waste Water (OMW) Treatment in Arid Zone]
9.3.2 Biological Treatment of Industrial Wastewater (Case Study: Anaerobic Biodegradation of Chlorinated Organics in Bioaugmented with Desulfitobacterium spp.”)
9.3.3 Biological Treatment of Industrial Wastewater (Case Study: Anaerobic Treatment of Wastewater from Used Industrial Oil Recovery)
9.3.4 Biological Treatment of Industrial Wastewater (Case Study of OMW Treatment)
9.3.5 Biological Treatment of Industrial Wastewater (Environmental Bioremediation by Lipopeptides Biosurfactants Microorganisms Produced)
9.4 Bioremediation and Bioenergy of Sludge and Sediments
9.5 Contribution of Phytoremediation/Bioremediation Processes to Recent Developments in the Economics of Sustainable Development
9.5.1 Sustainable Development and the Negative Effects of the Economic System on the Environment
9.5.2 The Three Pillars of Sustainable Development
9.5.3 Is Economic Growth Compatible with the Preservation of the Environment?
9.5.3.1 The Economic Growth and Development Results from the Interaction of Several Types of Capital
9.5.3.2 Sustainable or Sustainable Development and the Debate on the Substitutability of Capital
9.5.3.2.1 Sustainability, Growth and Environment
9.5.3.2.2 Sustainable Development: Strong Sustainability (or Sustainability)/Low Sustainability (or Sustainability) Sustainable or Sustainable Development Integrates Three Dimensions
9.5.4 What Environmental Policies to Put in Place by Governments?
9.6 Conclusions
References
Chapter 10: Applying Amendments for Metal(loid) Phytostabilization: Effects on Soil Biogeochemical and Microbiological Processes
10.1 Introduction
10.2 Phytostabilization to Contain Metal(loid) Pollution and Reduce Its Negative Effects
10.2.1 Salicaceae, Species with a Good Potential for Phytostabilization
10.2.2 Amendments to Improve Soil Conditions
10.2.2.1 Organic Amendments
10.2.2.2 Iron Oxides and Iron-Based Amendments
10.3 The Effects of Amendments
10.3.1 The Effects of Amendments on the Soil
10.3.2 The Effects of Amendments on Plant Growth and Metal(loid) Accumulation
10.3.3 The Specific Response of Roots to Amendments
10.3.4 Modification of Soil–Microbial Community by Amendments
10.4 Concluding Remarks and Future Perspectives
References
Chapter 11: Rhizodegradation: The Plant Root Exudate and Microbial Community Relationship
11.1 Introduction
11.2 Bioremediation of Organic Contaminants in the Soil
11.2.1 Microbial Degradation of Organic Contaminants
11.2.2 Bioremediation
11.2.3 Phytoremediation of Organic Contaminants
11.3 Plant Root Exudation and Its Influence on Biodegradation
11.3.1 The Release of Root Exudates
11.3.2 Influence of Root Exudates on Biodegradation
11.4 Plant Growth Promoting Microbes-Assisted Rhizoremediation
11.4.1 Arbuscular Mycorrhizal Fungi (AMF)-Assisted Phytoremediation
11.4.2 Plant Growth-Promoting Bacteria (PGPB)-Assisted Phytoremediation
11.5 Future Perspectives
References
Chapter 12: Role of Microorganisms in the Remediation of Toxic Metals from Contaminated Soil
12.1 Introduction
12.1.1 Human Health and Heavy Metals
12.2 Microbial Remediation
12.2.1 Biological Remediation with Bacteria
12.2.1.1 Endophytic Bacteria Used for Phytoremediation
12.2.2 Biological Remediation with Fungi
12.3 Microbes-Assisted Remediation Mechanisms
12.3.1 Biomining
12.3.2 Biosorption
12.3.3 Plant and Microbes-Assisted Remediation
12.4 Factors Contribute to the Microbial Degradation of Heavy Metal Pollution
12.4.1 Ambient Temperature
12.4.2 pH
12.4.3 Substrate Species
12.4.4 Substrate Concentration
12.4.5 Composite Reclamation
12.5 Bioremediation- A Sustainable Approach for Environmental Restoration
12.6 Economic Perspective
12.6.1 Market Niches for Secondary Products
12.7 Public Perception of Bioremediation
12.8 Applicability of Bioremediation Techniques for Decontamination of High Metal and Multi-metal Contamination in Soil
12.9 Challenges and Future Prospect
12.10 Conclusion
References
Part V: Phytoremediation of Organic and Inorganic Contaminants and Organic-Inorganic Mixtures
Chapter 13: Prospects for the Use of Sorghum Bicolor for Phytoremediation of Soils Contaminated with Heavy Metals in Temperate Climates
13.1 Introduction. High Biomass Plants in Soil Phytoremediation. Features of Use
13.2 The Physiological Characteristics of Sorghum Growing on Soils Contaminated with Heavy Metals. Adaptation to Stress
13.3 Features of Bioaccumulation of Toxic Elements from Soils Contaminated with Heavy Metals in Conditions of Model Experiment
13.4 Sorghum Rhizosphere Microorganisms and Resistance to Heavy Metals
13.5 Prospects for the Use of Sorghum for Phytoremediation of Urban Soils in Temperate Climates
13.6 Conclusions
References
Chapter 14: Comparative Effect of Cadmium on Germination and Early Growth of Two Halophytes: Atriplex halimus L. and A. nummularia Lindl. for Phytoremediation Applications
14.1 Introduction
14.2 Materials and Methods
14.2.1 Species Description and Seed Source
14.2.2 Germination Experiment and Seedling Measurements
14.2.3 Statistical Analysis
14.3 Results and Discussion
14.3.1 Cadmium Effects on Germination Percentage
14.3.2 Cadmium Effects on the Timson’s Index
14.3.3 Cadmium Effects on Early Seedling Growth
14.3.4 Cadmium Tolerance Index (TI %)
14.3.5 Phytotoxicity Index (PI %)
14.4 Conclusion
References
Chapter 15: Phytoremediation of Soils Polluted by Heavy Metals and Metalloids: Recent Case Studies in Latin America
15.1 Introduction
15.1.1 Heavy Metals
15.1.2 Impact on Soils
15.2 Types of Phytoremediation
15.2.1 Phytostabilization
15.2.2 Phytoextraction
15.2.3 Rhizofiltration
15.3 Study Cases by Country
15.4 Argentina
15.5 Brazil
15.6 Chile
15.7 Colombia
15.8 Ecuador
15.9 Honduras
15.10 Mexico
15.11 Peru
15.12 Final Remarks
References
Part VI: Nanotechnology in Management of Environmental Contaminants
Chapter 16: Nano-phytoremediation and Its Applications
16.1 Introduction
16.2 Nano-phytoremediation
16.2.1 Nanoparticles
16.2.2 Phytoremediation
16.3 Nano-phytoremediation of Pollutants in Soil
16.3.1 Function of Nanomaterials in the Technique of Phytoremediation
16.3.2 Applications of Nanomaterials Through the Process of Phytoremediation in Polluted Soil
16.3.3 Nanomaterial Promotes Phytoremediation for Removal of Heavy Metals from the Soil
16.3.4 Nanomaterial Stimulates Phytoremediation for Extraction of As
16.3.5 Nanomaterial Used in Phytoremediation for Remediation of Organic Contaminants
16.3.6 Direct Removal of Contaminants by Using Nanomaterials
16.3.7 Phytoremediation of Contaminated Soil
16.3.8 Ideal Plant Characteristics for Nano-phytoremediation
16.4 Important Plant Species Used for Phytoremediation
16.4.1 Brassica juncea
16.4.2 Pteris vittata
16.4.3 Helianthus annuus or Sunflowers
16.4.4 Salix viminalis or Willow
16.4.5 Thlaspi caerulescens or Alpine Pennycress
16.4.6 Ambrosia artemisiifolia or Common Ragweed
16.4.7 Populus Trees
16.4.8 Mirabilis jalapa
16.4.9 Apocynum cannabinum
16.4.10 Festuca arundinacea
16.4.11 Hordeum vulgare L. or Barley
16.5 Selection of Suitable Nanoparticles for Phytoremediation
16.5.1 Role of Nanoparticles to Clean-up Environment
16.5.2 Challenges of Nano-phytoremediation
16.6 Applications of Nano-phytoremediation
16.7 Stimulating Plant Growth
16.8 Accelerating the Phytoavailability of Pollutants
16.9 Nano-phytoremediation in the Purification of Water
16.10 Conclusion and Future Perspectives
References
Chapter 17: Potentials and Frontiers of Nanotechnology for Phytoremediation
17.1 Introduction
17.2 What Is Nano-phytoremediation?
17.2.1 Synthesis of Nanoparticles
17.2.2 Phytoremediation
17.3 Contribution of Nanoparticles in Nano-phytoremediation
17.4 Role of Nanomaterials in Nano-phytoremediation
17.4.1 Directly Removing the Pollutants
17.4.2 Enhancing the Phyto-availability of the Pollutants
17.4.3 Promoting Plant Growth
17.5 Factors Affecting the Course of Nano-phytoremediation
17.6 Advantages, Limitations, and Concerns
17.7 Conclusion
References
Chapter 18: Nanotechnology in Management of Environmental Contaminants
18.1 Introduction
18.2 Environmental Contamination
18.3 Nanotechnology: Origin and Types
18.4 Classification of NPs/Types of NPs
18.4.1 Carbon-Based NPs
18.4.2 Metal-Based NPs
18.4.3 Semiconductor NPs
18.4.4 Ceramic Nanoparticles
18.4.5 Polymeric nanoparticles
18.4.6 Lipid-Based Nanoparticles
18.4.7 Nanomaterials
18.5 Remediation of Major Environmental Contaminants Via Nanotechnology
18.5.1 Heavy Metals
18.5.2 Organic Pollutants
18.5.3 Pesticides
18.6 Conclusion and Future Research Directions
References
Chapter 19: Nanotechnologies and Phytoremediation: Pros and Cons
19.1 Introduction
19.2 Phytoremediation
19.3 Nanotechnology
19.4 Nanomaterial
19.5 Nano Zero-Valent Iron (nZVI)
19.6 Nano-phytoremediation
19.7 Conclusion
References
Chapter 20: Nanotechnology in Phytoremediation: Application and Future
20.1 Introduction to Nanotechnology
20.2 Phytoremediation
20.2.1 Nanophytoremediation
20.3 Applications of Nanophytoremediation
20.3.1 Water Purification
20.3.2 Organic Pollutants
20.3.3 Removal of Chlorinated Pesticides
20.3.4 Removal of Insecticides
20.3.5 Heavy Metals and Metalloids
20.3.6 Agrochemicals
20.3.7 Fluoride
20.3.8 Dyes
20.3.9 Acid Mine Drainage
20.4 Types of Nanoparticles to Be Used in Phytoremediation
20.4.1 Nanoscale Zero-Valent Iron
20.4.2 Titanium Oxide Nanoparticles
20.4.3 Functional Carbon Nanodots
20.4.4 Copper Oxide Nanoparticles
20.4.5 Graphene Oxide Nanoparticles
20.5 Benefits of Nanotechnology in Phytoremediation
20.6 Conclusion and Future Prospects
References
Chapter 21: Nano-phytoremediation: The Successful Combination of Nanotechnology and Phytoremediation
21.1 Introduction
21.2 Nanotechnology for Environmental Remediation
21.2.1 Inorganic Materials
21.2.2 Carbon-Based Nanomaterials
21.2.3 Polymer-Based Nanomaterials
21.2.4 Risks Associated with the Use of Nanoparticles and Solutions Toward Effective Management
21.3 Nano-phytoremediation
21.3.1 Nanoparticles and Microorganisms for Phytoremediation
21.4 Soil Nano-phytoremediation: Association of Nanotechnology and Remediation
21.4.1 Nano-phytoremediation: Arsenic in the Soil and Water
21.4.2 Nano-phytoremediation of Organochlorine Compounds
21.4.3 Potentially Toxic Metals
21.5 Challenges and Future Perspectives of Nano-phytoremediation
References
Chapter 22: Nanobioremediation and Its Application for Sustainable Environment
22.1 Introduction
22.2 Nanobioremediation
22.2.1 Challenges of NPs in Nanobioremedaition
22.2.2 The Principle of Nanobioremediation
22.2.3 Challenges of Nanobioremediation
22.2.4 Interaction of NPs with Microbes and Soil
22.2.5 Advantages of Nanobioremediation
22.2.6 The Science of Nanobioremediation
22.3 Various NPs Used in Nanobioremediation
22.3.1 Nano-Fe and Its Related Derivatives Applied in Bioremediation
22.3.2 Use of Dendrimers in Bioremediation
22.3.3 Carbon Nanotubes (CNTs) and Nanocrystals Used in Bioremediation
22.3.4 Enzyme NPs Used in Bioremediation
22.3.4.1 Single-Enzyme NPs Used in Bioremediation
22.3.5 Engineered Polymer-Based NPs for Bioremediation of Contaminants
22.3.6 Use of Biogenic Uraninite NPs for Remediation of Uranium
22.3.7 The Phytoremediation of Heavy Metals by Using NPs of Noaea Mucronata
22.3.8 Microbial Nano-biomolecules for the Remediation of Contaminants
22.3.9 Engineered Polymeric NPs Used in the Remediation of Soil
22.4 The Science Regarding Bioremediation by Using NM
22.5 Conclusion
References
Chapter 23: Nanoparticles-Assisted Phytoremediation of Polluted Soils: Potential Application and Challenges
23.1 Introduction
23.2 Nano-phytoremediation of Soil Pollutants
23.2.1 Inorganic Soil Pollutants
23.2.2 Organic Soil Pollutants
23.3 Characteristics of Remediation Plants
23.4 Processes Involved in NPs-Assisted Phytoremediation
23.4.1 Direct Removal of Pollutants
23.4.2 Increase in Bioavailability of Pollutants
23.4.3 Improvement in Plant Growth
23.5 Types of NPs Pertinent for Nano-phytoremediation
23.5.1 Metal-Based NPs
23.5.2 Carbon-Based NPs
23.5.3 Engineered NPs
23.6 Factors That Affect Efficiency of Nano-phytoremediation
23.6.1 Soil Factors
23.6.2 Plant Factors
23.7 Production Technologies of NPs
23.7.1 Bottom-Up Technique
23.7.2 Top-Down Technique
23.8 Toxicities and Challenges Associated with NPs Application in Soil
23.9 Future Perspectives
References
Chapter 24: A Systematic Analysis of Nanotechnology Application in Water Contaminations Removal
24.1 Introduction
24.2 Methodology
24.3 Result and Discussion
24.4 Conclusion
References
Chapter 25: Nanoparticles-Based Management of Cadmium Toxicity in Crop Plants
25.1 Introduction: Cadmium Toxicity to Plants
25.2 Nanoparticles in Sustainable Agriculture
25.3 Nanoparticles-Induced Alleviation of Cd Toxicity in Crop Plants
25.3.1 Nanoparticles-Mediated Modification of Cd Uptakes in Roots of Crop Plants
25.3.2 Nanoparticles-Mediated Amelioration of Cd-Induced Toxicity
25.3.2.1 Modulation of Mineral Elements
25.3.2.2 Enhancement of Growth (Biomass)
25.3.2.3 Improvement of Leaf Health
25.3.2.4 Improvement of Nutritional Quality of Crops
25.4 Mechanisms of Nanoparticles-Mediated Amelioration of Cd-Induced Toxicity in Crop Plants
25.4.1 Reduction in Soil Cd Bioavailability
25.4.2 Modification of Homeostasis
25.4.2.1 Changes in the Distribution of Tissue Cd
25.4.2.2 Enhancement of Antioxidant Defense Systems
25.4.2.3 Modification of Expression of Cd Transport Genes
25.4.2.4 Increased Induction of Root Exudates or Complexants
25.4.2.5 Structural Alteration of Crop Plants
25.5 Conclusion
References
Chapter 26: Heavy Metal Remediation by Nanotechnology
26.1 Introduction to Heavy Metals
26.2 Polycyclic Aromatic Hydrocarbons (PAHs)
26.3 Conventional Treatments
26.4 Bioremediation
26.5 Nanoparticles
26.6 Nanotechnology for Bioremediation
26.7 Nano-Adsorbents
26.8 Carbon Nanoparticles
26.9 Carbon Nanotubes
26.10 Fullerenes
26.11 Graphene Oxide Nanocomposites
26.12 Nanometal Oxides
26.13 Iron Oxide Nanoparticles
26.14 Polymeric Nanoparticles
26.15 Silicon Nanoparticles
26.16 Nanobots
26.17 Nanofiltration
26.18 Microfiltration and Ultrafiltration
26.19 Biogenic Nanoparticles
26.20 Nano Cellulose
26.21 Yeast
26.22 Fungus
26.23 Algae
26.24 Cyanobacteria
26.25 Bacteria
26.26 Recommendations
26.27 Conclusion
References
Chapter 27: Phytoremediation and Management of Environmental Contaminants: Conclusion and Future Perspectives
References
Index