Physics of the Atmosphere and Climate

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Murry L. Salby
Publisher: Cambridge University Press
Year: 2012

Language: English
Pages: 666
City: New York

Cover......Page 1
Physics of the Atmosphere and Climate......Page 2
Praise for Physics of the Atmosphere and Climate......Page 3
Title......Page 4
Copyright......Page 5
Dedicated......Page 6
The Helmholtz Theorem......Page 8
Preface......Page 16
Prelude......Page 20
1.1.1 Descriptions of atmospheric behavior......Page 22
1.1.2 Mechanisms influencing atmospheric behavior......Page 23
1.2.1 Description of air......Page 24
1.2.2 Stratification of mass......Page 28
1.2.3 Thermal and dynamical structure......Page 35
Adiabatic adjustment......Page 41
Water vapor......Page 48
Ozone......Page 52
Methane......Page 56
Halocarbons......Page 58
Atmospheric aerosol......Page 60
1.2.5 Cloud......Page 62
1.3 RADIATIVE EQUILIBRIUM OF THE EARTH......Page 67
1.4.1 Global-mean energy balance......Page 69
1.4.2 Horizontal distribution of radiative transfer......Page 71
1.5 THE GENERAL CIRCULATION......Page 74
1.6 HISTORICAL PERSPECTIVE: GLOBAL-MEAN TEMPERATURE......Page 77
1.6.1 The instrumental record......Page 78
1.6.2 Proxy records......Page 86
PROBLEMS......Page 92
2.1 THERMODYNAMIC CONCEPTS......Page 95
2.1.2 Expansion work......Page 96
2.1.4 State variables and thermodynamic processes......Page 98
2.2.1 Internal energy......Page 102
2.2.2 Diabatic changes of state......Page 103
2.3 HEAT CAPACITY......Page 104
2.4 ADIABATIC PROCESSES......Page 107
2.4.1 Potential temperature......Page 108
2.4.2 Thermodynamic behavior accompanying vertical motion......Page 111
2.5 DIABATIC PROCESSES......Page 112
2.5.1 Polytropic processes......Page 113
PROBLEMS......Page 114
3.1 NATURAL AND REVERSIBLE PROCESSES......Page 116
3.1.1 The Carnot cycle......Page 119
3.2 ENTROPY AND THE SECOND LAW......Page 120
3.3 RESTRICTED FORMS OF THE SECOND LAW......Page 123
3.4 THE FUNDAMENTAL RELATIONS......Page 124
3.4.2 Noncompensated heat transfer......Page 125
3.5 CONDITIONS FOR THERMODYNAMIC EQUILIBRIUM......Page 126
3.6.1 Implications for vertical motion......Page 128
PROBLEMS......Page 131
4.1 DESCRIPTION OF A HETEROGENEOUS SYSTEM......Page 133
4.2 CHEMICAL EQUILIBRIUM......Page 136
4.3 FUNDAMENTAL RELATIONS FOR A MULTI-COMPONENT SYSTEM......Page 138
4.4 THERMODYNAMIC DEGREES OF FREEDOM......Page 139
4.5 THERMODYNAMIC CHARACTERISTICS OF WATER......Page 140
4.6.1 Latent heat......Page 143
4.6.2 Clausius-Clapeyron Equation......Page 144
SUGGESTED REFERENCES......Page 146
PROBLEMS......Page 147
5.1.1 Properties of the gas phase......Page 148
5.1.2 Saturation properties......Page 150
5.2 IMPLICATIONS FOR THE DISTRIBUTION OF WATER VAPOR......Page 152
5.3 STATE VARIABLES OF THE TWO-COMPONENT SYSTEM......Page 153
5.3.2 Saturated behavior......Page 154
5.4.1 Condensation and the release of latent heat......Page 156
5.4.2 The pseudo-adiabatic process......Page 160
5.4.3 The Saturated Adiabatic Lapse Rate......Page 162
5.5 THE PSEUDO-ADIABATIC CHART......Page 163
Surface relative humidity......Page 164
Freezing level of surface air......Page 165
Mixing ratio inside cloud at 650 hPa......Page 166
PROBLEMS......Page 167
6.1 EFFECTIVE GRAVITY......Page 171
6.2 GEOPOTENTIAL COORDINATES......Page 173
6.3 HYDROSTATIC BALANCE......Page 174
6.3.2 Meteorological Analyses......Page 175
6.4 STRATIFICATION......Page 178
6.4.1 Idealized stratification......Page 180
6.5 LAGRANGIAN INTERPRETATION OF STRATIFICATION......Page 182
6.5.1 Adiabatic stratification: A paradigm of the troposphere......Page 183
6.5.2 Diabatic stratification: A paradigm of the stratosphere......Page 186
PROBLEMS......Page 189
7.1 REACTION TO VERTICAL DISPLACEMENT......Page 192
7.2 STABILITY CATEGORIES......Page 194
7.2.1 Stability in terms of temperature......Page 195
7.2.2 Stability in terms of potential temperature......Page 196
7.2.3 Moisture dependence......Page 199
7.3 IMPLICATIONS FOR VERTICAL MOTION......Page 200
7.4 FINITE DISPLACEMENTS......Page 201
7.4.1 Conditional instability......Page 202
7.4.2 Entrainment......Page 207
7.4.3 Potential instability......Page 209
7.4.4 Modification of stability under unsaturated conditions......Page 211
7.5 STABILIZING AND DESTABILIZING INFLUENCES......Page 212
7.6.2 Inversions......Page 215
7.6.3 Life cycle of the nocturnal inversion......Page 216
7.7 RELATIONSHIP TO OBSERVED THERMAL STRUCTURE......Page 218
PROBLEMS......Page 221
8.1 SHORTWAVE AND LONGWAVE RADIATION......Page 224
8.1.1 Spectra of observed SW and LW radiation......Page 225
8.2.1 Radiometric quantities......Page 230
Lambert's Law......Page 232
8.2.3 Emission......Page 233
The Stefan-Boltzmann Law......Page 234
Kirchoff's Law......Page 236
8.2.4 Scattering......Page 237
8.2.5 The Equation of Radiative Transfer......Page 239
8.3.1 Interaction between radiation and molecules......Page 240
8.3.2 Line broadening......Page 245
8.4 RADIATIVE TRANSFER IN A PLANE PARALLEL ATMOSPHERE......Page 248
8.4.1 Transmission function......Page 250
8.4.2 Two-stream approximation......Page 252
8.5.1 Radiative equilibrium in a gray atmosphere......Page 255
8.5.2 Radiative-convective equilibrium......Page 258
8.5.3 Radiative heating......Page 261
8.6 THERMAL RELAXATION......Page 266
8.7 THE GREENHOUSE EFFECT......Page 268
8.7.1 Feedback in the climate system......Page 270
Temperature – Water Vapor Feedback......Page 272
Temperature – CO2 feedback......Page 273
Ice – Albedo Feedback......Page 275
8.7.2 Unchecked feedback......Page 279
8.7.3 Simulation of climate......Page 281
PROBLEMS......Page 283
9.1.1 Continental aerosol......Page 287
9.1.3 Stratospheric aerosol......Page 292
9.2.1 Droplet growth by condensation......Page 293
9.2.2 Droplet growth by collision......Page 302
9.2.3 Growth of ice particles......Page 303
9.3.1 Formation and classification of cloud......Page 305
9.3.2 Microphysical properties of cloud......Page 313
9.3.3 Cloud dissipation......Page 314
9.3.4 Cumulus detrainment: Influence on the environment......Page 315
Rayleigh scattering......Page 319
Mie scattering......Page 322
9.4.2 Radiative transfer in a cloudy atmosphere......Page 326
Influence of cloud cover......Page 336
Influence of aerosol......Page 340
SUGGESTED REFERENCES......Page 345
PROBLEMS......Page 346
CHAPTER TEN: Atmospheric motion......Page 349
10.1 DESCRIPTION OF ATMOSPHERIC MOTION......Page 350
10.2 KINEMATICS OF FLUID MOTION......Page 351
10.4 REYNOLDS’ TRANSPORT THEOREM......Page 355
10.5 CONSERVATION OF MASS......Page 357
10.6.1 Cauchy's Equations of Motion......Page 358
10.6.2 Momentum equations in a rotating reference frame......Page 360
10.7 THE FIRST LAW OF THERMODYNAMICS......Page 362
PROBLEMS......Page 364
11.1 CURVILINEAR COORDINATES......Page 366
11.2 SPHERICAL COORDINATES......Page 369
11.2.1 The traditional approximation......Page 374
11.3 SPECIAL FORMS OF MOTION......Page 375
11.4.1 Motion-related stratification......Page 376
11.4.2 Scale analysis......Page 377
11.5.1 Isobaric coordinates......Page 379
11.5.2 Log-pressure coordinates......Page 384
11.5.3 Isentropic coordinates......Page 386
PROBLEMS......Page 390
12.1 GEOSTROPHIC EQUILIBRIUM......Page 392
12.1.1 Motion on an f plane......Page 395
12.2 VERTICAL SHEAR OF THE GEOSTROPHIC WIND......Page 397
12.2.1 Classes of stratification......Page 398
12.2.2 Thermal wind balance......Page 400
12.3 FRICTIONAL GEOSTROPHIC MOTION......Page 401
12.4 CURVILINEAR MOTION......Page 403
12.4.1 Inertial motion......Page 405
12.4.3 Gradient motion......Page 406
12.5.1 Barotropic nondivergent motion......Page 407
12.5.2 Vorticity budget under baroclinic stratification......Page 408
12.5.3 Quasi-geostrophic motion......Page 413
PROBLEMS......Page 416
CHAPTER THIRTEEN: The planetary boundary layer......Page 419
13.1 DESCRIPTION OF TURBULENCE......Page 420
13.1.1 Reynolds decomposition......Page 422
13.1.2 Turbulent diffusion......Page 424
13.2.1 The Ekman Layer......Page 425
13.3 INFLUENCE OF STRATIFICATION......Page 427
13.4 EKMAN PUMPING......Page 431
PROBLEMS......Page 434
14.1.1 Surface water waves......Page 437
14.1.2 Fourier synthesis......Page 440
14.1.3 Limiting behavior......Page 443
14.1.4 Wave dispersion......Page 445
14.2 ACOUSTIC WAVES......Page 449
14.3 BUOYANCY WAVES......Page 450
14.3.1 Shortwave limit......Page 456
14.3.2 Propagation of gravity waves in an inhomogeneous medium......Page 457
14.3.3 The WKB approximation......Page 459
Turning Level......Page 460
Critical level......Page 463
14.4 THE LAMB WAVE......Page 465
14.5.1 Barotropic nondivergent Rossby waves......Page 466
14.5.2 Rossby wave propagation in three dimensions......Page 468
14.5.3 Planetary wave propagation in sheared mean flow......Page 472
14.5.4 Transmission of planetary wave activity......Page 475
14.6 WAVE ABSORPTION......Page 478
14.7 NONLINEAR CONSIDERATIONS......Page 480
SUGGESTED REFERENCES......Page 487
PROBLEMS......Page 488
CHAPTER FIFTEEN: The general circulation......Page 491
15.1 FORMS OF ATMOSPHERIC ENERGY......Page 492
15.1.1 Moist static energy......Page 493
15.1.2 Total potential energy......Page 494
15.1.3 Available potential energy......Page 496
15.2 HEAT TRANSFER IN A ZONALLY SYMMETRIC CIRCULATION......Page 499
15.3 HEAT TRANSFER IN A LABORATORY ANALOGUE......Page 507
Continent......Page 510
15.4.2 Surface pressure and wind systems......Page 512
15.4.3 Tropical circulations......Page 515
15.5 FLUCTUATIONS OF THE CIRCULATION......Page 520
El Nino......Page 521
North Atlantic oscillation......Page 523
Arctic oscillation......Page 524
Antarctic Oscillation......Page 529
Madden-Julian Oscillation......Page 530
PROBLEMS......Page 533
16.1 INERTIAL INSTABILITY......Page 536
16.2.1 Necessary conditions for instability......Page 538
16.2.2 Barotropic and baroclinic instability......Page 540
16.3 THE EADY MODEL......Page 541
16.4 NONLINEAR CONSIDERATIONS......Page 547
PROBLEMS......Page 552
17.1 COMPOSITION AND STRUCTURE......Page 554
17.1.1 Stratification......Page 557
17.1.2 Motion......Page 559
17.2 ROLE IN THE HEAT BUDGET......Page 562
17.3 ROLE IN THE CARBON CYCLE......Page 565
17.4.1 The Ekman layer......Page 567
17.4.2 Sverdrup balance......Page 572
17.5 THE BUOYANCY-DRIVEN CIRCULATION......Page 574
ENSO......Page 577
Pacific Decadal Oscillation......Page 582
Other fluctuations......Page 584
PROBLEMS......Page 585
CHAPTER EIGHTEEN: Interaction with the stratosphere......Page 587
18.1.1 The chemical family......Page 588
18.1.2 Photochemical equilibrium......Page 589
18.2 INVOLVEMENT OF OTHER SPECIES......Page 591
18.2.1 Nitrous oxide......Page 592
18.2.2 Chlorofluorocarbons......Page 593
18.2.3 Methane......Page 595
18.3 MOTION......Page 596
18.3.1 The Brewer-Dobson circulation......Page 597
18.3.2 Wave driving of mean meridional motion......Page 598
18.3.3 Transformed Eulerian description......Page 602
18.4 SUDDEN STRATOSPHERIC WARMINGS......Page 606
18.5 THE QUASI-BIENNIAL OSCILLATION......Page 610
18.6 DIRECT INTERACTION WITH THE TROPOSPHERE......Page 612
18.7 HETEROGENEOUS CHEMICAL REACTIONS......Page 617
18.8 INTERANNUAL CHANGES......Page 623
PROBLEMS......Page 636
Appendix A: Conversion to SI units......Page 638
Appendix B: Thermodynamic properties of air and water......Page 639
Appendix C: Physical constants......Page 640
Appendix D: Vector identities......Page 641
Appendix E: Curvilinear coordinates......Page 642
Appendix F: Pseudo-adiabatic chart......Page 644
Appendix G: Acronyms......Page 646
CHAPTER 3......Page 648
CHAPTER 7......Page 649
CHAPTER 9......Page 650
CHAPTER 12......Page 651
CHAPTER 15......Page 652
CHAPTER 18......Page 653
References......Page 654
Index......Page 668
color plates......Page 688