Physics of Semiconductor Devices covers both basic classic topics such as energy band theory and the gradual-channel model of the MOSFET as well as advanced concepts and devices such as MOSFET short-channel effects, low-dimensional devices and single-electron transistors. Concepts are introduced to the reader in a simple way, often using comparisons to everyday-life experiences such as simple fluid mechanics. They are then explained in depth and mathematical developments are fully described. Physics of Semiconductor Devices contains a list of problems that can be used as homework assignments or can be solved in class to exemplify the theory. Many of these problems make use of Matlab and are aimed at illustrating theoretical concepts in a graphical manner.
Author(s): J.-P. Colinge, C.A. Colinge
Edition: 1
Publisher: Kluwer Academic Publishers
Year: 2002
Language: English
Pages: 451
Tags: Физика;Физика твердого тела;Физика полупроводников;
CONTENTS......Page 6
Preface......Page 12
1.1.1.1. Free electron......Page 16
1.1.1.2. The particle-in-a-box approach......Page 18
1.1.2. Energy bands of a crystal (intuitive approach)......Page 21
1.1.3. Krönig-Penney model......Page 22
1.1.4. Valence band and conduction band......Page 30
1.1.5. Parabolic band approximation......Page 34
1.1.6. Concept of a hole......Page 35
1.1.7. Effective mass of the electron in a crystal......Page 36
1.1.8. Density of states in energy bands......Page 40
1.2. Intrinsic semiconductor......Page 44
1.3. Extrinsic semiconductor......Page 46
1.3.1. Ionization of impurity atoms......Page 49
1.3.2. Electron-hole equilibrium......Page 50
1.3.3. Calculation of the Fermi Level......Page 52
1.3.4. Degenerate semiconductor......Page 54
1.4. Alignment of Fermi levels......Page 55
Important Equations......Page 58
Problems......Page 59
2.1. Drift of electrons in an electric field......Page 66
2.2. Mobility......Page 68
2.3. Drift current......Page 71
2.3.1. Hall effect......Page 72
2.4. Diffusion current......Page 74
2.5.1. Einstein relationships......Page 75
2.6. Transport equations......Page 77
2.7. Quasi-Fermi levels......Page 80
Important Equations......Page 82
Problems......Page 83
3.1. Introduction......Page 88
3.2. Direct and indirect transitions......Page 89
3.3. Generation/recombination centers......Page 92
3.4. Excess carrier lifetime......Page 94
3.5. SRH recombination......Page 97
3.5.1. Minority carrier lifetime......Page 101
3.6. Surface recombination......Page 102
Problems......Page 104
4.1. Introduction......Page 110
4.2. Unbiased PN junction......Page 112
4.3. Biased PN junction......Page 118
4.4. Current-voltage characteristics......Page 120
4.4.1. Derivation of the ideal diode model......Page 122
4.4.2. Generation/recombination current......Page 128
4.4.3. Junction breakdown......Page 131
4.4.4. Short-base diode......Page 133
4.5.1. Transition capacitance......Page 135
4.5.2. Diffusion capacitance......Page 136
4.5.3. Charge storage and switching time......Page 138
4.6. Models for the PN junction......Page 140
4.6.2. Small-signal, low-frequency model......Page 141
4.7. Solar cell......Page 143
4.8. PiN diode......Page 147
Problems......Page 148
5.1.1. Energy band diagram......Page 154
5.1.2. Extension of the depletion region......Page 157
5.1.3. Schottky effect......Page 158
5.1.4. Current-voltage characteristics......Page 160
5.1.5. Influence of interface states......Page 161
5.1.6. Comparison with the PN junction......Page 162
5.2. Ohmic contact......Page 164
Important Equations......Page 165
Problems......Page 166
6.1. The JFET......Page 168
6.2. The MESFET......Page 174
Important Equations......Page 178
7.1. Introduction and basic principles......Page 180
7.2.1. Accumulation......Page 185
7.2.2. Depletion......Page 191
7.2.3. Inversion......Page 193
7.3.1 Ideal threshold voltage......Page 198
7.3.2. Flat-band voltage......Page 199
7.4. Current in the MOS transistor......Page 202
7.4.1. Influence of substrate bias on threshold voltage......Page 207
7.4.2. Simplified model......Page 209
7.5. Surface mobility......Page 211
7.6. Carrier velocity saturation......Page 214
7.7. Subthreshold current - Subthreshold slope......Page 216
7.8. Continuous model......Page 221
7.9. Channel length modulation......Page 223
7.10. Numerical modeling of the MOS transistor......Page 225
7.11. Short-channel effect......Page 228
7.12.1. Scaling rules......Page 231
7.12.3. Substrate current......Page 233
7.12.4. Gate current......Page 234
7.12.5. Degradation mechanism......Page 235
7.13. Terminal capacitances......Page 236
7.14.1. Non-Volatile Memory MOSFETs......Page 239
7.14.2. SOI MOSFETs......Page 243
7.15.1. Polysilicon depletion......Page 245
7.15.3. Drain-induced barrier lowering (DIBL)......Page 246
7.15.4. Gate-induced drain leakage (GIDL)......Page 247
7.15.5. Reverse short-channel effect......Page 248
7.15.6. Quantization effects in the inversion channel......Page 249
Important Equations......Page 250
Problems......Page 251
8.1. Introduction and basic principles......Page 266
8.1.1. Long-base device......Page 267
8.1.2. Short-base device......Page 268
8.1.3. Fabrication process......Page 271
8.2. Amplification using a bipolar transistor......Page 273
8.3. Ebers-Moll model......Page 274
8.3.1. Emitter efficiency......Page 283
8.3.2. Transport factor in the base......Page 284
8.4. Regimes of operation......Page 287
8.5. Transport model......Page 288
8.6. Gummel-Poon model......Page 290
8.6.1.1. Recombination in the base......Page 295
8.6.1.2. Emitter efficiency and current gain......Page 297
8.7. Early effect......Page 301
8.8.1. Recombination at the emitter-base junction......Page 305
8.8.2. Kirk effect......Page 307
8.10. Numerical simulation of the bipolar transistor......Page 310
8.11.1. Common-base configuration......Page 313
8.11.2. Common-emitter configuration......Page 314
8.12. Charge-control model......Page 315
8.12.1. Forward active mode......Page 316
8.12.2. Large-signal model......Page 321
8.12.3. Small-signal model......Page 322
Problems......Page 324
9.1. Concept of a heterojunction......Page 330
9.1.1. Energy band diagram......Page 331
9.2. Heterojunction bipolar transistor (HBT)......Page 335
9.2. High electron mobility transistor (HEMT)......Page 336
9.3.1. Light-emitting diode (LED)......Page 339
9.3.2. Laser diode......Page 341
Problems......Page 345
10.1.1. Tunnel effect......Page 346
10.1.2. Tunnel diode......Page 348
10.2. Low-dimensional devices......Page 351
10.2.1. Energy bands......Page 352
10.2.2. Density of states......Page 358
10.2.3. Conductance of a 1D semiconductor sample......Page 363
10.2.4. 2D and 1D MOS transistors......Page 365
10.3.1. Tunnel junction......Page 368
10.3.2. Double tunnel junction......Page 370
10.3.3. Single-electron transistor......Page 373
Problems......Page 376
11.1. Semiconductor materials......Page 378
11.2. Silicon crystal growth and refining......Page 379
11.3.1. Ion implantation......Page 382
11.3.2. Doping impurity diffusion......Page 385
11.3.3. Gas-phase diffusion......Page 388
11.4. Oxidation......Page 389
11.5.1. Silicon deposition and epitaxy......Page 396
11.5.2. Dielectric layer deposition......Page 397
11.6. Photolithography......Page 399
11.7. Etching......Page 403
11.8.2. Metal deposition......Page 406
11.8.3. Metal silicides......Page 407
11.9. CMOS process......Page 408
11.10. NPN bipolar process......Page 414
Problems......Page 420
Al. Physical Quantities and Units......Page 424
A2. Physical Constants......Page 425
A3. Concepts of Quantum Mechanics......Page 426
A4. Crystallography – Reciprocal Space......Page 429
A5. Getting Started with Matlab......Page 433
A6. Greek alphabet......Page 441
A7. Basic Differential Equations......Page 442
D......Page 446
F......Page 447
M......Page 448
R......Page 449
T......Page 450
Z......Page 451