This volume presents the new objectives of physics on self-organizing systems composed of multi-components, in order to create a new field and establish universal comprehension in physics. The book covers broad topics such as the thermodynamic time asymmetry in both transient and stationary nonequilibrium states, the seriousness of auxiliary conditions in physicochemical processes and biological systems, the quantum-classical and micro-macro interfaces which are familiar in mesoscopic physics, the purification scheme of quantum entanglement, topics on gamma-ray bursts, and the walking mechanism of single molecular motors.
Author(s): Shin'ichi Ishiwata, Yasushi Matsunaga
Edition: Har/Cdr
Publisher: World Scientific Publishing Company
Year: 2008
Language: English
Commentary: 168150
Pages: 250
CONTENTS......Page 12
Preface......Page 6
Organizing Committees......Page 8
Part A Biophysics......Page 16
1. Introduction......Page 18
2. What is wrong with Complex Systems Study?......Page 19
3. What has Physics not done?......Page 21
4. Fundamental Conditions......Page 23
5. How to obtain Phenomenology of Complex Systems......Page 27
6. Basic Observations about FC and Complexi cation......Page 28
7. Potential use of Qualitative Phenomenology......Page 32
References......Page 35
1.1. Translation......Page 36
1.2. Elongation cycle......Page 38
2. Principle for Optical Tweezers Technique......Page 40
3.1. Rupture force measurement method......Page 42
3.2.1. Ribosome complex with mRNA including the SD interaction......Page 44
3.2.2. Ribosome complex with mRNA excluding the SD interaction......Page 47
3.3. Conclusion and discussion......Page 49
References......Page 51
1. Linear Molecular Motors and Myosin V......Page 52
2. How Myosin V may Walk......Page 53
3.1. Observing the leg motion in stepping phase by a rod......Page 54
3.2. Two mechanisms for the lifted foot to access a forward site......Page 56
4. On the Toe Up-down Mechanism for the Lifted Foot binding to a Forward Site......Page 57
5. Biological Rod as a Probe and its Attachment......Page 59
References......Page 60
1. Introduction......Page 62
3.1. Cooperative force generation modulated through the sarcomere structure......Page 64
3.2. Cooperative force generation through the myosin binding......Page 65
3.3. Cooperative force generation under various activating states......Page 66
4. Molecular Mechanism of SPOC......Page 67
5. Summary......Page 69
References......Page 70
1. Introduction......Page 72
2.1. 3D structure of Fo......Page 73
2.2. Protein model and interactions......Page 74
3. Rotational Motion of the c-ring in Equilibrium......Page 75
4. Non-equilibrium Rotational Motion......Page 77
References......Page 78
Part B Nonequilibrium Statistical Physics and Related Topics......Page 80
1. Introduction......Page 82
2. The Breaking of Time Reversal Symmetry in Nonequilibrium Statistical Mechanics......Page 83
3. The Relaxation Modes of Diffusion......Page 89
4. Experimental Evidence of the Time Asymmetry of Nonequilibrium Fluctuations......Page 92
5. The Fluctuation Theorem......Page 96
6. Molecular Motors......Page 97
References......Page 101
1. Introduction......Page 103
2. Repeated-measurement-based Puri cation Scheme: Ideal Case......Page 105
2.2. Example 2: Entanglement extraction......Page 108
3. Incorporation of Decoherence......Page 111
3.1. Purification under dephasing environment......Page 113
3.2. Dissipative environment......Page 115
Acknowledgments......Page 118
References......Page 119
1. Introduction......Page 121
2. Quantum Escape Rate......Page 122
4. Fluctuation Theorem......Page 124
5. Large Deviation Expression......Page 125
6. Summary......Page 126
References......Page 127
1. Introduction......Page 128
2. Two-dimensional Stick-slip Model......Page 131
3. Results and Discussion......Page 132
3.1. Probability density distribution......Page 133
3.2. Survivor function......Page 134
Acknowledgments......Page 136
References......Page 137
1. Introduction......Page 138
2.1. SHG microscope observations......Page 139
3.1. SHG microscope observations......Page 140
3.2. Polarization microscope observations......Page 142
References......Page 144
1. Introduction......Page 146
3. Results and Discussion......Page 148
4. Summary......Page 150
References......Page 152
1. Introduction......Page 153
2. Methods: MD Simulation......Page 154
3.1. Torque Calculation for the Single Molecule......Page 157
4. Summary......Page 160
References......Page 161
1. Introduction......Page 162
3. Experimental Results......Page 164
4. Discussion......Page 166
References......Page 170
Part C Astrophysics as Interdisciplinary Science......Page 174
New View on Quantum Gravity: Micro-Structure of Spacetime and Origin of the Universe B. L. Hu......Page 176
1.2. What is Quantum Gravity? { Classical to Quantum, Macro to Micro......Page 177
1.3. General Relativity as the Hydrodynamics of Spacetime Microstructure......Page 178
2.1. Two paradigms: Elementary Particle versus Condensed Matter Physics......Page 179
2.2. Two Aspects in Cosmology......Page 180
2.3. Two Directions of Cosmological Research......Page 181
3.1. The three lowest layers: Classical, Semiclassical and Stochastic Gravity......Page 182
3.2. Mesoscopic Structure and Stochastic Gravity......Page 183
3.3. Spacetime as an Emergent Collective State of Strongly Correlated Systems......Page 184
4. One Vein of the `Hydro' View: Spacetime as Condensate?......Page 185
4.2. Unconventional view 2: Spacetime is, after all, a quantum entity......Page 186
5. Implications for the Origin of the Universe and other Issues......Page 187
References......Page 189
Colliding Branes and Its Application to String Cosmology Y. Takamizu......Page 192
1. Basic Idea of Colliding Branes......Page 193
2. Reheating Mechanism in Colliding Two Branes Universe......Page 194
3. Fermions on Colliding Brane......Page 195
4. Collision of Two Domain Walls in Asymptotic Anti de Sitter Spacetime......Page 197
5. Colliding Branes and Black Brane Production......Page 199
6. Conclusion......Page 200
References......Page 201
1. Introduction......Page 202
2. Stochastic Gravity......Page 204
3.1. Scalar Perturbations......Page 208
3.2. Tensor Perturbations......Page 209
4. Discussion......Page 210
References......Page 212
Variational Calculation for the Equation of State of Nuclear Matter toward Supernova Simulations H. Kanzawa, K. Oyamatsu, K. Sumiyoshi and M. Takano......Page 214
2. Uniform Matter at Zero Temperature......Page 215
3. Uniform Nuclear Matter at Finite Temperatures......Page 217
4. Thomas-Fermi Calculations for Atomic Nuclei......Page 219
References......Page 223
Two Strong Radio Bursts at High and Medium Galactic Latitude S. Kida and T. Daishido......Page 224
2. Observation......Page 225
3. Analysis......Page 226
4. Results......Page 227
5.1. New type radio transients......Page 228
5.2. New population......Page 230
References......Page 233
1. Introduction......Page 234
2. Input Physics......Page 235
3. Result and Discussion......Page 237
Acknowledgment......Page 238
References......Page 239
Presentation Titles......Page 242
Author Index......Page 250