Physics of Classical Electromagnetism

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book is unique because unlike others on the subject that focus on mathematical arguments, this volume emphasizes the original field concept, aiming at objectives in modern information technology. Written primarily for undergraduate students of physics and engineering, this book serves as a useful reference for graduate students and researchers too. With concise introductory arguments for the physics of electromagnetism, this book covers basic topics including the nature of space-time-dependent radiations in modern applications.

Author(s): Minoru Fujimoto
Edition: 1
Year: 2007

Language: English
Pages: 340

Contents......Page 5
Preface......Page 10
1.1. Introduction......Page 12
1.2. Standards for Electric Voltages and Current......Page 13
1.3. Ohm Law's and Heat Energy......Page 15
1.4. The Kirchhoff Theorem......Page 19
PART 1. ELECTROSTATICS......Page 24
2.1. Static Charges and Their Interactions......Page 25
2.2. A Transient Current and Static Charges......Page 26
2.3. Uniform Electric Field in a Parallel-Plate Condenser......Page 29
2.4. Parallel and Series Connections of Capacitors......Page 35
2.5. Insulating Materials......Page 36
3.1. A Spherical Capacitor......Page 40
3.2. A Cylindrical Capacitor......Page 43
3.3. The Gauss Theorem......Page 44
3.4. Boundary Conditions......Page 49
4.1. The Electrostatic Potential......Page 53
4.2. The Gauss Theorem in Differential Form......Page 54
4.3. Curvilinear Coordinates (1)......Page 56
4.4. The Laplace–Poisson Equations......Page 59
4.5. Simple Examples......Page 63
4.6. The Coulomb Potential......Page 65
4.7. Point Charges and the Superposition Principle......Page 68
5.1. The Laplace Equation in Spherical Coordinates......Page 74
5.2. Series Expansion of the Coulomb Potential......Page 76
5.3. Legendre's Polynomials......Page 78
5.4. A Conducting Sphere in a Uniform Field......Page 79
5.5. A Dielectric Sphere in a Uniform Field......Page 81
5.6. A Point Charge Near a Grounded Conducting Sphere......Page 82
5.7. A Simple Quadrupole......Page 85
5.8. Associated Legendre Polynomials......Page 86
5.9. Multipole Potentials......Page 89
PART 2. ELECTROMAGNETISM......Page 93
6.1. Introduction......Page 94
6.2. The Ampère Law......Page 95
6.3. A Long Solenoid......Page 98
6.4. Stokes' Theorem......Page 100
6.5. Curvilinear Coordinates (2)......Page 103
6.6. The Ampère Law in Differential Form......Page 105
6.7. The Rowland Experiment......Page 107
7.1. Laws of Magnetic Induction......Page 110
7.2. Differential Law of Induction and the Dynamic Electric Field......Page 113
7.3. Magnetic Moments......Page 117
8.1. Magnets......Page 121
8.2. Pohl's Magnetic Potentiometer......Page 123
8.3. Scalar Potentials of Magnets......Page 125
8.4. Vector Potentials......Page 128
8.5. Examples of Steady Magnetic Fields......Page 130
8.6. Vector and Scalar Potentials of a Magnetic Moment......Page 135
8.7. Magnetism of a Bohr's Atom......Page 137
9.1. Inductances......Page 141
9.2. Self- and Mutual Inductances......Page 144
9.3. Mutual Interaction Force Between Currents......Page 147
9.4. Examples of Mutual Induction......Page 148
10.1. Continuity of Charge and Current......Page 151
10.2. Alternating Currents......Page 152
10.3. Impedances......Page 154
10.4. Complex Vector Diagrams......Page 156
10.5. Resonances......Page 158
10.6. Four-Terminal Networks......Page 161
PART 3. ELECTROMAGNETIC WAVES......Page 168
11.1. Self-Sustained Oscillators......Page 169
11.2. Transmission Lines......Page 171
11.3. Fourier Transforms......Page 173
11.4. Reflection and Standing Waves......Page 175
11.5. The Smith Chart......Page 178
12.1. The Maxwell Equations......Page 180
12.2. Electromagnetic Energy and the Poynting Theorem......Page 183
12.3. Vector and Scalar Potentials......Page 184
12.4. Retarded Potentials......Page 185
12.5. Multipole Expansion......Page 188
13.2. Electric Dipole Radiation......Page 192
13.3. The Hertz Vector......Page 196
13.4. A Half-Wave Antenna......Page 200
13.5. A Loop Antenna......Page 201
13.6. Plane Waves in Free Space......Page 203
14.1. Newton's Laws of Mechanics......Page 207
14.2. The Michelson–Morley Experiment......Page 208
14.3. The Lorentz Transformation......Page 210
14.4. Velocity and Acceleration in Four-Dimensional Space......Page 212
14.5. Relativistic Equation of Motion......Page 214
14.6. The Electromagnetic Field in Four-Dimensional Space......Page 216
15.1. Skin Depths......Page 222
15.2. Plane Electromagnetic Waves in a Conducting Medium......Page 224
15.3. Boundary Conditions for Propagating Waves......Page 226
15.4. Reflection from a Conducting Boundary......Page 227
15.5. Dielectric Boundaries......Page 229
15.6. The Fresnel Formula......Page 231
16.1. Propagation Between Parallel Conducting Plates......Page 234
16.2. Uniform Waveguides......Page 237
16.3. Examples of Waveguides......Page 241
PART 4. COHERENT WAVES AND RADIATION QUANTA......Page 248
17.1. Orthogonality Relations of Waveguide Modes......Page 249
17.2. Impedances......Page 251
17.3. Power Transmission Through a Waveguide......Page 255
17.4. Multiple Reflections in a Waveguide......Page 256
18.1. Slater's Theory of Normal Modes......Page 259
18.2. The Maxwell Equations in a Cavity......Page 262
18.3. Free and Damped Oscillations......Page 264
18.4. Input Impedance of a Cavity......Page 266
18.5. Example of a Resonant Cavity......Page 269
18.6. Measurements of a Cavity Resonance......Page 271
19.1. Electronic Admittance......Page 274
19.2. A Klystron Cavity......Page 276
19.3. Velocity Modulation......Page 280
19.4. A Reflex Oscillator......Page 282
20.1. Introduction......Page 286
20.2. The Kramers–Krönig Formula......Page 287
20.3. Dielectric Relaxation......Page 289
20.4. Magnetic Resonance......Page 294
20.5. The Bloch Theory......Page 296
20.6. Magnetic Susceptibility Measured by Resonance Experiments......Page 298
21.1. Optical Resonators......Page 300
21.2. Quantum Transitions......Page 302
21.3. Inverted Population and the Negative Temperature......Page 305
21.4. Ammonium Maser......Page 306
21.5. Coherent Light Emission from a Gas Laser......Page 307
21.6. Phase Coherence and Radiation Quanta......Page 308
APPENDIX......Page 310
A.1. Orthogonal Vector Space......Page 311
A.2. Orthogonality of Legendre's Polynomials......Page 312
A.3. Associated Legendre Polynomials......Page 314
A.4. Fourier Expansion and Wave Equations......Page 316
A.5. Bessel's Functions......Page 318
REFERENCES......Page 321
C......Page 322
E......Page 323
I......Page 324
M......Page 325
R......Page 326
U......Page 327
W......Page 328