Physicochemical Aspects of Metal-Organic Frameworks: A New Class of Coordinative Materials

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book presents a both detailed and comprehensive look at metal–organic frameworks (MOFs), a relatively new class of materials with a broad application potential. The beginning chapters focus on introducing the requisite fundamental knowledge of MOFs with respect to their classification, synthesis, functionalization approaches, and various other physiochemical facets such as structural morphology and coordination chemistry. The remaining chapters cover an array of diverse applications, from areas such as energy storage and environmental remediation, to drug delivery, biosensing, and tissue engineering.
Featuring chapters dedicated to the design of novel MOF structures, as well as theoretical calculations via density functional theory and machine learning techniques, this book targets a wide readership of both academic and industrial researchers interested in an in-depth understanding of the latest MOF structure–function relationships, as well as their deployment in a wide variety of coordinated engineering applications.

Author(s): Ali Maleki, Reza Taheri-Ledari
Series: Engineering Materials
Publisher: Springer
Year: 2023

Language: English
Pages: 343
City: Cham

Preface
Contents
About the Editors
Overview of Metal Organic Frameworks
1 Introduction
2 Chemical Composition
3 Porosity
4 Metal Biomolecule Frameworks (Bio-MOFs)
5 MOFs Synthesis
6 Conclusion
References
Classification of the MOFs Based on the Secondary Building Units (SBUs)
1 Introduction
2 MOFs with Their Secondary Building Units
2.1 Ti-Base MOFs
2.2 Zr-Based MOFs
2.3 Sc-Based MOFs
2.4 Mn-Based MOFs
2.5 Alkali Metal-Based MOFs
3 Conclusion
References
MOFs Preparation and Synthetic Approaches
1 New Synthetic Approaches to Provide Metal–Organic Frameworks
2 Ionothermal Method
3 Deep Eutectic Solvent Usage
4 Surfactant-Thermal process
5 Mechanochemistry
6 MOFs Synthetic Approaches and Potential Usage
7 Synthesis of MOFs
8 The Synthetic Strategies of 2D-MOFs
9 D-Metal Organic Frameworks
10 Synthetic Methods of 2D-MOFs
11 Langmuir–Blodgett Technique
12 Sonication Exfoliation Method
13 Mechanical Exfoliation Method
14 Modulated Strategy
References
MOFs Functionalization Approaches
1 Introduction
2 Functionalization of MOFs Produces Unique Materials with Multiple Properties for Different Applications
2.1 Functionalization of MOF for Producing Photoactive Materials
2.2 Functionalization of MOFs in Drug Delivery
2.3 Functionalization of MOF for Catalytic Applications
2.4 Functionalization of MOF for Removal of HG2+
2.5 Functionalization of MOF as Phase Transfer Catalyst
2.6 Functionalization of MOF for Sensitive Fluorescent Probe of S2O82− and Fe3+
2.7 Functionalization of MOF for CO2 Adsorption
3 Conclusion
References
MOFs Structural Morphologies
1 Solvent Effect
2 PH Effect
3 Effect of Metal Ions
4 Time Effect
5 Additive Effect
6 Effect of Synthesis Method
6.1 Synthesis of Deprotonation Regulation
6.2 Synthesis of Coordinate Modulation
7 Temperature Effect
8 Effect of Molar Ratio of Reactants
9 Conclusion
References
MOFs Bandstructure
1 Semiconducting MOFs
2 Band Gap Investigation
3 Band Energy Values (in Electronvolts) Calculated from Periodic Systems and Linker Molecules
4 Semiconductor Metal–Organic Framework (MOF) Photocatalyst
5 The Band Gap Value of Different Linkers of MOFs
References
Evolution in MOF Porosity, Modularity, and Topology
1 Introduction
2 Porosity of MOFs
2.1 Surface Area and Distribution of Size and Volume of Pores
2.2 Methods for Porous MOF Designing
2.3 Controlling Porosity Using Isoreticular Expansion and/or Contraction
3 Topology
4 Conclusion
References
MOF Scaffolds Tunability and Flexibility
1 Tunable Nanomicrostructure
1.1 Tunable Mechanical Properties
1.2 Morphologically tunable
2 Flexibility
2.1 Temperature and Gust Molecules Affect Flexibility
2.2 Flexible MOF Nanorod
2.3 Flexible MOF-Aminoclay Nanocomposites
References
MOF Scaffolds Defects and Disorders
1 Introduction
2 Structural Defect Generation in MOFs
2.1 De Novo Synthesis
2.2 Post-synthetic Modification
3 Defect Characterization in MOFs
4 Applications of Defective MOFs
4.1 Applications in Gas Adsorption and Separation
4.2 Applications in Catalysis
4.3 Decontamination Applications
4.4 Bio-Applications
4.5 Smart Applications
5 Conclusion and Future Prospects
References
Composition States of MOFs
1 Introduction
2 Generation of Basic Sites
3 MOFs with Intrinsic Basicity
3.1 Basicity from Alkaline Earth Metal Sites
3.2 Basicity from Hybrid Metal Nodes
3.3 Basicity from N-Containing Ligands
3.4 Basicity from Structural Phenolates
4 MOFs with Modified Basicity
4.1 Functionalization of Metal Sites
4.2 Functionalization of Ligands
References
Identification and Analytical Approaches
1 Fourier Transform Infrared (FT-IR)
2 Energy Dispersive X-ray (EDS)
3 Dynamic Light Scattering (DLS)
4 Scanning Electron Microscopy (SEM)
5 Transmission Electron Microscopy (TEM)
6 Brunauer–Emmett–Teller (BET)
7 X-Ray Diffraction (XRD)
8 Thermogravimetric Analysis (TGA)
References
Coordination Chemistry of MOFs
1 Molecular Orbital
1.1 Ionic Size and Crystal Environment
1.2 Metal–Ligand Bonds
2 Synthesis of Coordination Compounds
2.1 The Reaction of a Metal Salt with a Ligand
2.2 Ligand Replacement Reactions
2.3 The Reaction of Two Metal Compounds
2.4 Oxidation–Reduction Reactions
2.5 Partial Decompositions
2.6 Precipitation Making Use of the Hard-Soft Interaction Principle
2.7 Reactions of Metal Compounds with Amine Salts
3 Coordination in MOFs
3.1 The Charge Density
3.2 Thermal Stability
3.3 Chemical Stability
References
Applications of MOFs
1 Catalysts and Photocatalysts
1.1 Introduction
1.2 MOF Catalyst Modifications
1.3 Possible Routes and Syntheses
1.4 Physical–chemical Property Modification
1.5 Modification of Morphology
1.6 Modifying of Metal Ions and Ligands
1.7 Defect Engineering
1.8 Functional Modification
2 Optics
2.1 Introduction
2.2 Photonic MOF Enterprise and Manufacturing Strategies
2.3 MOFs for Luminescent Sensors
2.4 MOFs for Lighting and Info Display in Solid-State
3 Sensors and Biosensors
4 Batteries and Supercapacitors
4.1 Introduction
4.2 MOFs as Electrode Materials
4.3 MOFs as Host Material for Li–O2, Zn–air, Li–S, and Li–Se Batteries
4.4 Supercapacitors
5 Solar Cells
5.1 Introduction
5.2 Generation of Solar Cells
5.3 Perovskite Solar Cells
5.4 Effects of MOF on Perovskite Solar Cells
6 Fuel Cells
6.1 Introduction
6.2 H2 Production from Water Splitting Using MOFs
6.3 H2 Production from Ammonia Borane Andorganosilanes Using MOFs
6.4 MOFs as Oxygen Reduction Reaction Catalysts
6.5 MOFs as Proton-Conducting Polymer Electrolyte Membranes
6.6 MOFs as H2 Storage Medium
7 Energy Storage and Conversion
8 Molecular Transport
9 CO2 and N2 Reduction
9.1 Introduction
9.2 MOFs that Have not Been Changed
9.3 Linker Modification of MOFs
9.4 Amine Functionalization
10 Water and Alcohol Oxidation
10.1 Alcohol Oxidation
10.2 Water Oxidation
11 Water Electrolysis and Splitting
12 Environmental Remediation
12.1 Degradation of Organic Dyes
13 Environmental Contaminants Adsorption
14 Environmental Contaminants Degradation
15 Membranes
15.1 Introduction
15.2 Advanced MOF Materials for Mixed Matrix Membranes
15.3 MOF Glasses for Membranes
15.4 Neat MOF Membranes
16 Separation
16.1 The Requirement for Energy-Effectual Gas Separations
16.2 Current and Emerging Technologies for Gas Separations
16.3 Existing Status of Membrane-Constructed Gas Separations
16.4 MOF as an Adsorbent
17 Drug Delivery
17.1 Introduction
17.2 Functionalization for Drug Delivery
17.3 Applications in Drug Delivery
18 Antibacterial and Antimicrobial Scaffolds
19 Tissue Engineering
19.1 Introduction
19.2 Physiology of Bone Healing
19.3 Applications of Nano-MOFs in Bone Tissue Engineering
20 Wound Healing
20.1 Physiology of Wound Healing
20.2 Applications of Nano-MOFs in Wound Healing
References
Industrialization of MOFs
1 Introduction
2 MOFs from Academia to Industrial Applications
3 Industrial Synthetic Routes of MOFs
3.1 Microwave Synthesis
3.2 Continuous Flow Chemistry
3.3 Electrochemical Synthesis
3.4 Mechanochemistry Synthesis
3.5 Ultrasonic Synthesis
3.6 Supercritical CO2
3.7 Solvothermal/Hydrothermal
4 Conclusions
References
Computational Studies
1 Introduction
2 Enhancement of Computational Approaches and MOF’s Conceptions
2.1 Atomic Partial Charge Estimation
2.2 Extended Charge Equilibration Approach
3 Conclusion
References
Future Outlook
References
Conclusion
1 Synthetic Work Focusing on Metal-Containing Nodes or Coordination Bonds
2 Ligand Design and Post-synthetic Modification on Linkers
3 Symmetry-Guided Synthesis and Structural Characterization of MOFs from Micro-, Meso- to Macro-scale
4 MOF Interdisciplinary Research
5 Potential Application of MOFs
References