Physical Properties of Nanosystems

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Recent advances in nanoscience have demonstrated that fundamentally new physical phenomena are found when systems are reduced to sizes comparable to the fundamental microscopic length scales of the material investigated. There has been great interest in this research due, in particular, to its role in the development of spintronics, molecular electronics and quantum information processing. The contributions to this volume describe new advances in many of these fundamental and fascinating areas of nanophysics, including carbon nanotubes, graphene, magnetic nanostructures, transport through coupled quantum dots, spintronics, molecular electronics, and quantum information processing.

Author(s): Janez Bonca, Sergei Kruchinin
Series: NATO Science for Peace and Security Series B: Physics and Biophysics
Edition: 1st Edition.
Publisher: Springer
Year: 2010

Language: English
Pages: 350

Cover......Page 1
Physical Properties of Nanosystems......Page 4
ISBN 9789400700437 (HB)......Page 5
Preface......Page 6
Contents......Page 8
Part I Electron transport in nanosystems......Page 12
1.1 Introduction......Page 14
1.2 Spectroscopic ellipsometry......Page 15
References......Page 19
2.1 Introduction......Page 22
2.2 Calculation of renormalized parameters......Page 25
2.3 Electron transport through quantum dot......Page 28
References......Page 33
3.1 Introduction......Page 36
3.2 A single junction......Page 37
3.3 Arrays of tunnel junctions......Page 41
3.4 Cascade two-stage relaxation: general applications......Page 43
References......Page 52
4.1 Introduction......Page 56
4.2 Coupling of vibration to charge: Anderson-Holstein model......Page 58
4.3 Oscillations with respect to the leads......Page 64
Regularized modulation......Page 66
4.4 Numerical results......Page 67
4.5 Conclusion......Page 68
References......Page 70
5.1 Introduction......Page 72
5.2 Wave equations......Page 73
5.3 Anderson localization......Page 74
5.4 Adding nonlinearity......Page 75
5.5 From strong to weak chaos, from resonances to nonlinear diffusion......Page 80
5.6 Generalizations......Page 85
5.7 Discussion and conclusions......Page 87
References......Page 88
6.1 Introduction......Page 90
6.2 Quantization of electrical conductance in nanostructures......Page 91
6.3 Quantization of thermal conductance in nanostructures......Page 93
6.4 Spread of doping atoms in a semiconductor material......Page 95
6.6 Conclusions......Page 96
References......Page 97
7.1 Introduction......Page 98
7.2 The system......Page 101
7.3 Theoretical formalism......Page 102
7.4 Circuit representation of the boundary conditions......Page 103
7.5 Conductance renormalization procedure......Page 105
7.6 Retarded and advanced Greens functions evolution in normal metals and superconductors......Page 108
7.7 Spectral current flow through the superconducting grains......Page 109
7.8 Recurrent relations......Page 110
7.9 Results and discussion......Page 112
7.10 Conclusions......Page 114
A Recurrent relations for the quasiparticle currents and distribution functions......Page 115
B Charge transport in SNS junctions......Page 116
References......Page 117
Part II Superconductivity......Page 120
8.1 Introduction......Page 122
8.2 Model and basic equations......Page 123
8.3 Josephson current near critical temperature Tc......Page 125
References......Page 128
9.1 Introduction......Page 130
9.2 Quasiparticle spectrum in a quantum wire......Page 131
9.3 BCS-BEC crossover driven by quantum confinement......Page 133
9.4 Conclusions......Page 137
References......Page 138
10.1 Introduction......Page 140
10.2 Experimental methods......Page 141
10.3 Theoretical background......Page 144
10.4 Results and discussion......Page 145
10.5 Summary......Page 149
References......Page 150
11.1 Introduction......Page 152
11.2 The model......Page 154
11.3 Low-energy excitations......Page 156
11.4 Some results......Page 157
References......Page 161
12.1 Introduction......Page 164
12.2 Theoretical model......Page 165
References......Page 173
13.1 Introduction......Page 175
13.2 BCS Hamiltonian and BCS ground state......Page 177
13.3 Multiple quasiparticle pairs in the BCS ground state......Page 178
13.4 Conclusion......Page 185
References......Page 186
14.1 Introduction......Page 188
14.2 Model free energy of a two-band superconductor......Page 189
14.3 Phase diagram of a two-band superconductor......Page 191
14.4 Relaxation of order parameters fluctuations......Page 192
14.5 Results and discussion......Page 193
References......Page 197
15.1 Introduction......Page 198
15.2 Formulation of the problem......Page 200
15.3 Results......Page 202
15.4 Conclusion......Page 205
References......Page 206
16.2 Hole superconductivity in BaO layers......Page 208
16.3 Cuprate-plane's charge in YBa2Cu3Ox......Page 210
16.6 Specific heat and thermal conductivity of YBa2Cu3O7......Page 211
References......Page 212
17.1 Introduction......Page 214
17.2 Application of the AHM to the mean field Bose gas......Page 216
17.3 Mean field Bose gas in external potential......Page 220
References......Page 222
Part III Spintronics......Page 224
18.1 Introduction......Page 226
18.2 Theory......Page 228
18.3 Results......Page 235
18.4 Discussion......Page 239
References......Page 243
19.1 Introduction......Page 244
19.2 Model and method......Page 246
19.3 Paramagnetic metal......Page 247
19.4 Superconductivity......Page 252
19.5 Summary......Page 255
References......Page 256
20.1 Introduction......Page 258
20.2 Kondo model......Page 259
20.3 Numerical renormalization group method......Page 260
20.4 Isotropic Kondo impurity......Page 261
20.5 Anisotropic Kondo impurity......Page 263
20.6 Effect of the hybridization......Page 264
20.7 Conclusion......Page 266
References......Page 267
21.1 Introduction......Page 270
21.2 Numerical analysis of the Anderson model......Page 272
21.3 Analytical solution......Page 273
21.4 Discussions and conclusions......Page 276
References......Page 278
22.1 Introduction......Page 280
22.2 What is subject of quantum mechanics description?......Page 281
Double-slit interference experiment......Page 282
Radioactive decay of atom as classical example of causeless phenomena......Page 283
Collapse of wave function -- Von Neumann's projection postulate......Page 284
Entanglement of atom and cat states by Schrodinger emphasizes incompleteness of causeless phenomena description......Page 285
22.3 Can an experimental result be considered as a challenge to macroscopic realism?......Page 286
References......Page 288
23.1 Introduction......Page 292
23.2 Formulation of the problem......Page 293
23.3 The average interaction potential between 1D SSC and the external field......Page 297
23.4 Energy distribution function of 1D SSCs ensemble......Page 302
23.5 The critical properties of Nx particles system......Page 303
23.6 Permittivity of neighboring layers......Page 304
23.7 Concluding remarks......Page 305
References......Page 306
Part IV Sensors......Page 308
24.1 Introduction......Page 310
24.2 The description of experimental device-BIOSCOPE......Page 311
24.3 Main results obtained by use of bioscope device......Page 312
24.4 Distant evaluation of functional state of anaesthetized rat......Page 315
24.5 Mechanism of formation of equipment signals......Page 316
24.6 Concluding remarks......Page 319
References......Page 320
25.1 Introduction......Page 322
25.2 The resonance tunneling under difference of temperatures......Page 323
25.3 Double barriers thermostructures for the resonant tunneling......Page 325
References......Page 329
26.2 Light emission by N-doped GaAs1-xPx......Page 330
26.3 Ultra-transparent solids and optical fibers......Page 332
References......Page 335
27.1 Introduction......Page 336
27.3 Results and discussion......Page 338
27.4 The influence of Cu monolayer numbers on TDS......Page 343
27.5 Influence oxygen preadsorption and aging processes on H uptake......Page 344
27.7 Conclusion......Page 346
References......Page 347
Index......Page 349