Phonons in Nanostructures

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book focuses on the theory of phonon interactions in nanoscale structures with particular emphasis on modern electronic and optoelectronic devices. A key goal is to describe tractable models of confined phonons and how these are applied to calculations of basic properties and phenomena of semiconductor heterostructures. The level of presentation is appropriate for undergraduate and graduate students in physics and engineering with some background in quantum mechanics and solid state physics or devices.

Author(s): Michael A. Stroscio, Mitra Dutta
Year: 2005

Language: English
Pages: 292

Table of Contents......Page 8
Preface......Page 12
1.1 Phonon effects: fundamental limits on carrier mobilities and dynamical processes......Page 16
1.2 Tailoring phonon interactions in devices with nanostructure components......Page 18
2.2 Ionic bonding – polar semiconductors......Page 21
2.3 Linear-chain model and macroscopic models......Page 22
2.3.1 Dispersion relations for high-frequency and low-frequency modes......Page 23
2.3.2 Displacement patterns for phonons......Page 25
2.3.3 Polaritons......Page 26
2.3.4 Macroscopic theory of polar modes in cubic crystals......Page 29
3.1 Basic properties of phonons in würtzite structure......Page 31
3.2 Loudon model of uniaxial crystals......Page 33
3.3 Application of Loudon model to III-V nitrides......Page 38
4.2 Raman scattering for bulk zincblende and würtzite structures......Page 41
4.2.1 Zincblende structures......Page 43
4.2.2 Würtzite structures......Page 44
4.3 Lifetimes in zincblende and würtzite crystals......Page 45
4.4 Ternary alloys......Page 47
4.5 Coupled plasmon–phonon modes......Page 48
5.1 Phonon mode amplitudes and occupation numbers......Page 50
5.2 Polar-optical phonons: Fröhlich interaction......Page 55
5.4 Piezoelectric interaction......Page 58
6.1 Non-parabolic terms in the crystal potential for ionically bonded atoms......Page 60
6.2 Klemens’ channel for the decay process LO LA(1) Ⅸ LA(2)......Page 61
6.3 LO phonon lifetime in bulk cubic materials......Page 62
6.4 Phonon lifetime effects in carrier relaxation......Page 63
6.5 Anharmonic effects in würtzite structures: the Ridley channel......Page 65
7.1 Dielectric continuum model of phonons......Page 67
7.2 Elastic continuum model of phonons......Page 71
7.3 Optical modes in dimensionally confined structures......Page 75
7.3.1 Dielectric continuum model for slab modes: normalization of interface modes......Page 76
7.3.2 Electron–phonon interaction for slab modes......Page 81
7.3.3 Slab modes in confined würtzite structures......Page 86
7.3.4 Transfer matrix model for multi-heterointerface structures......Page 94
7.4 Comparison of continuum and microscopic models for phonons......Page 105
7.5 Comparison of dielectric continuum model predictions with Raman measurements......Page 108
7.6.1 Acoustic phonons in a free-standing and unconstrained layer......Page 112
7.6.2 Acoustic phonons in double-interface heterostructures......Page 115
7.6.3 Acoustic phonons in rectangular quantum wires......Page 120
7.6.4 Acoustic phonons in cylindrical structures......Page 126
7.6.5 Acoustic phonons in quantum dots......Page 139
8.1.1 Scattering rates in bulk zincblende semiconductors......Page 146
8.1.2 Scattering rates in bulk würtzite semiconductors......Page 151
8.2 Fröhlich potential in quantum wells......Page 155
8.2.1 Scattering rates in zincblende quantum-well structures......Page 156
8.3.1 Scattering rate for bulk LO phonon modes in quantum wires......Page 161
8.3.2 Scattering rate for confined LO phonon modes in quantum wires......Page 165
8.3.3 Scattering rate for interface-LO phonon modes......Page 169
8.3.4 Collective effects and non-equilibrium phonons in polar quantum wires......Page 177
8.3.5 Reduction of interface–phonon scattering rates in metal–semiconductor structures......Page 180
8.4 Scattering of carriers and LO phonons in quantum dots......Page 182
9.1.1 Deformation-potential scattering in bulk zincblende structures......Page 187
9.1.2 Piezoelectric scattering in bulk semiconductor structures......Page 188
9.2 Carrier–acoustic-phonon scattering in two-dimensional structures......Page 189
9.3.1 Cylindrical wires......Page 190
9.3.2 Rectangular wires......Page 196
10.1 Phonon effects in intersubband lasers......Page 201
10.2 Effect of confined phonons on gain of intersubband lasers......Page 210
10.3 Phonon contribution to valley current in double-barrier structures......Page 217
10.4 Phonon-enhanced population inversion in asymmetric double-barrier quantum-well lasers......Page 220
10.5 Confined-phonon effects in thin film superconductors......Page 223
10.6 Generation of acoustic phonons in quantum-well structures......Page 227
11.1 Pervasive role of phonons in modern solid-state devices......Page 233
11.2 Future trends: phonon effects in nanostructures and phonon engineering......Page 234
Appendix A: Huang–Born theory......Page 236
Appendix B: Wendler’s theory......Page 237
Appendix C: Optical phonon modes in double-heterointerface structures......Page 240
Appendix D: Optical phonon modes in single- and double-heterointerface würtzite structures......Page 251
Appendix E: Fermi golden rule......Page 265
Appendix F: Screening effects in a two-dimensional electron gas......Page 267
References......Page 272
D......Page 286
M......Page 287
T......Page 288
Z......Page 289