Stroscio (physics, Duke U.) and Dutta (the Army Research Office's Director of Research and Technology Integration) focus on the study of phonons and phonon-mediated effects in structures with nanoscale dimensional confinement in one or more spatial dimensions. Pertinent to the field of optoelectronics, quantum electronics, materials science, chemistry, and biology, the phenomenon explored is important in technologies needed to fabricate nanoscale structures and devices. Geared toward practicing physicists, the theme of the work is the description of optical and acoustic phonons in such nanostructures as the superconductor superlattice, quantum wires, and carbon nanotubes.
Author(s): Stroscio M.A., Dutta M.
Publisher: Cambridge University Press
Year: 2001
Language: English
Pages: 290
City: Cambridge; New York
Cover......Page 1
Half-title......Page 3
Title......Page 5
Copyright......Page 6
Dedication......Page 7
Contents......Page 9
Preface......Page 13
1.1 Phonon effects: fundamental limits on carrier mobilities and dynamical processes......Page 17
1.2 Tailoring phonon interactions in devices with nanostructure components......Page 19
2.2 Ionic bonding–polar semiconductors......Page 22
2.3 Linear-chain model and macroscopic models......Page 23
2.3.1 Dispersion relations for high-frequency and low-frequency modes......Page 24
2.3.2 Displacement patterns for phonons......Page 26
2.3.3 Polaritons......Page 27
2.3.4 Macroscopic theory of polar modes in cubic crystals......Page 30
3.1 Basic properties of phonons in würtzite structure......Page 32
3.2 Loudon model of uniaxial crystals......Page 34
3.3 Application of Loudon model to III-V nitrides......Page 39
4.2 Raman scattering for bulk zincblende and würtzite structures......Page 42
4.2.1 Zincblende structures......Page 44
4.2.2 Würtzite structures......Page 45
4.3 Lifetimes in zincblende and würtzite crystals......Page 46
4.4 Ternary alloys......Page 48
4.5 Coupled plasmon–phonon modes......Page 49
5.1 Phonon mode amplitudes and occupation numbers......Page 51
5.2 Polar-optical phonons: Fröhlich interaction......Page 56
5.4 Piezoelectric interaction......Page 59
6.1 Non-parabolic terms in the crystal potential for ionically bonded atoms......Page 61
6.2 Klemens' channel for the decay process …......Page 62
6.3 LO phonon lifetime in bulk cubic materials......Page 63
6.4 Phonon lifetime effects in carrier relaxation......Page 64
6.5 Anharmonic effects in würtzite structures: the Ridley channel......Page 66
7.1 Dielectric continuum model of phonons......Page 68
7.2 Elastic continuum model of phonons......Page 72
7.3 Optical modes in dimensionally confined structures......Page 76
7.3.1 Dielectric continuum model for slab modes: normalization of interface modes......Page 77
7.3.2 Electron–phonon interaction for slab modes......Page 82
7.3.3 Slab modes in confined würtzite structures......Page 87
7.3.4 Transfer matrix model for multi-heterointerface structures......Page 95
7.4 Comparison of continuum and microscopic models for phonons......Page 106
7.5 Comparison of dielectric continuum model predictions with results of Raman measurements......Page 109
7.6.1 Acoustic phonons in a free-standing and unconstrained layer......Page 113
7.6.2 Acoustic phonons in double-interface heterostructures......Page 116
7.6.3 Acoustic phonons in rectangular quantum wires......Page 121
7.6.4 Acoustic phonons in cylindrical structures......Page 127
7.6.5 Acoustic phonons in quantum dots......Page 140
8.1.1 Scattering rates in bulk zincblende semiconductors......Page 147
8.1.2 Scattering rates in bulk würtzite semiconductors......Page 152
8.2 Fröhlich potential in quantum wells......Page 156
8.2.1 Scattering rates in zincblende quantum-well structures......Page 157
8.3.1 Scattering rate for bulk LO phonon modes in quantum wires......Page 162
8.3.2 Scattering rate for confined LO phonon modes in quantum wires......Page 166
8.3.3 Scattering rate for interface-LO phonon modes......Page 170
8.3.4 Collective effects and non-equilibrium phonons in polar quantum wires......Page 178
8.3.5 Reduction of interface–phonon scattering rates in metal–semiconductor structures......Page 181
8.4 Scattering of carriers and LO phonons in quantum dots......Page 183
9.1.1 Deformation-potential scattering in bulk zincblende structures......Page 188
9.1.2 Piezoelectric scattering in bulk semiconductor structures......Page 189
9.2 Carrier–acoustic-phonon scattering in two-dimensional structures......Page 190
9.3.1 Cylindrical wires......Page 191
9.3.2 Rectangular wires......Page 197
10.1 Phonon effects in intersubband lasers......Page 202
10.2 Effect of confined phonons on gain of intersubband lasers......Page 211
10.3 Phonon contribution to valley current in double-barrier structures......Page 218
10.4 Phonon-enhanced population inversion in asymmetric double-barrier quantum-well lasers......Page 221
10.5 Confined-phonon effects in thin film superconductors......Page 224
10.6 Generation of acoustic phonons in quantum-well structures......Page 228
11.1 Pervasive role of phonons in modern solid-state devices......Page 234
11.2 Future trends: phonon effects in nanostructures and phonon engineering......Page 235
Appendix A: Huang–Born theory......Page 237
Appendix B: Wendler’s theory......Page 238
Appendix C: Optical phonon modes in double-heterointerface structures......Page 241
D.1 Single-heterointerface uniaxial structures......Page 252
D.2 Double-heterointerface uniaxial structures......Page 256
Appendix E: Fermi golden rule......Page 266
Appendix F: Screening effects in a two-dimensional electron gas......Page 268
References......Page 273
Index......Page 287