The Handbook of Philosophy of Physics is part of the multi-volume series Handbook of Philosophy of Science under the general editorship of Dov Gabbay, Paul Thagard, and John Woods. As reflected in the titles of volumes in the series, the philosophy of science has become increasingly specialized into a number of sub-fields (philosophy of biology, philosophy of psychology and the cognitive sciences, philosophy of economics, etc.). Our volume focuses on foundations issue that arise from the fundamental theories of modern physics. - Definitive discussions of the philosophical implications of modern physics - Masterly expositions of the fundamental theories of modern physics - Covers all three main pillars of modern physics: relativity theory, quantum theory, and thermal physics - Covers the new sciences that have grown from these theories: for example, cosmology from relativity theory; and quantum information and quantum computing, from quantum theory - Contains special Chapters that address crucial topics that arise in several different theories, such as symmetry and determinism - Written by very distinguished theoretical physicists, including a Nobel Laureate, as well as by philosophers
Author(s): Jeremy Butterfield, John Earman, Dov M. Gabbay, John Woods, Paul Thagard
Series: Handbook of the Philosophy of Science
Publisher: North Holland
Year: 2006
Language: English
Pages: 1524
Front Cover......Page 1
Title Page......Page 4
Copyright Page......Page 5
Table of Contents......Page 10
General Preface......Page 6
Introduction......Page 14
List of Contributors......Page 24
1 Introduction......Page 26
2 Symplectic reduction: an overview......Page 33
3 Some geometric tools......Page 54
4 Actions of lie groups......Page 81
5 Poisson manifolds......Page 104
6 Symmetry and conservation revisited: Momentum maps......Page 128
7 Reduction......Page 144
Bibliography......Page 155
1 Introduction......Page 158
2 Hamiltonian and lagrangian mechanics......Page 164
3 Symplectic matters......Page 171
4 Lagrangian field theory......Page 179
5 Time and change in well-behaved field theories......Page 187
6 Complications......Page 196
7 The problem of time in general relativity......Page 221
Bibliography......Page 246
1 Introduction......Page 254
2 The structure of relativity theory......Page 255
3 Special topics......Page 281
Acknowledgements......Page 296
Bibliography......Page 297
Non-Relativistic Quantum Mechanics......Page 300
1 The theory......Page 301
2 Whence the kinematical formalism?......Page 334
3 Empirical content......Page 346
4 Uncertainty......Page 364
5 The ‘measurement problem’......Page 380
6 Non-locality......Page 406
7 Mathematical appendix......Page 422
Bibliography......Page 434
1 Introduction......Page 442
2 Early history......Page 447
3 Copenhagen: A reappraisal......Page 458
4 Quantization......Page 471
5 The limit ℏ → 0......Page 496
6 The limit N → ∞......Page 517
7 Why classical states and observables?......Page 540
8 Epilogue......Page 555
Bibliography......Page 556
1 Introduction......Page 580
2 Classical information......Page 582
3 Quantum information......Page 590
4 Entanglement assisted quantum communication......Page 615
5 Quantum cryptography......Page 619
6 Quantum computation......Page 639
7 Quantum foundations from the perspective of quantum information......Page 657
Bibliography......Page 680
1 Introduction to the notion of quantized fields......Page 686
2 Scalar fields......Page 688
3 Spinor fields......Page 703
4 Gauge fields......Page 709
5 The brout-englert-higgs mechanism......Page 719
6 Unitarity......Page 724
7 Renormalization......Page 732
8 Anomalies......Page 737
9 Asymptotic freedom......Page 741
10 Topological twists......Page 744
11 Confinement......Page 748
12 Outlook......Page 750
Bibliography......Page 752
Introduction......Page 756
1 Algebraic prolegomena......Page 757
2 Structure of the net of observable algebras......Page 765
3 Nonlocality and open systems in AQFT......Page 777
4 Prospects for particles......Page 783
5 The problem of value-definiteness in AQFT......Page 788
6 Quantum fields and spacetime points......Page 793
7 The problem of inequivalent representations......Page 805
8 The category Δ of localized transportable endomorphisms......Page 810
9 From fields to representations......Page 833
10 From representations to fields......Page 841
11 Foundational implications of the reconstruction theorem......Page 867
Bibliography......Page 882
A Categorical preliminaries......Page 890
B Abstract duality theory for symmetric tensor *-Categories......Page 908
1 Introduction......Page 993
2 Orthodox thermodynamics......Page 1002
3 Kinetic theory from bernoulli to maxwell......Page 1011
4 Boltzmann......Page 1022
5 Gibbs’ statistical mechanics......Page 1062
6 Modern approaches to statistical mechanics......Page 1075
7 Stochastic dynamics......Page 1108
Bibliography......Page 1133
1 Introduction......Page 1145
2 Early successes......Page 1147
3 Axiomatic prunings......Page 1158
4 The KMS condition for equilibrium......Page 1184
5 KMS condition, QSP and thermodynamics......Page 1192
6 Whence and whither QSP?......Page 1225
Bibliography......Page 1240
1 Introduction......Page 1253
2 Outline of cosmology......Page 1255
3 Issue A: The uniqueness of the universe......Page 1286
4 Issue B: The large scale of the universe in space and time......Page 1290
5 Issue C: The unbound energies in the early universe......Page 1302
6 Issue D: Explaining the universe — The question of origins......Page 1304
7 Issue E: The universe as the background for existence......Page 1308
8 Issue F: The explicit philosophical basis......Page 1312
9 Key issues......Page 1318
10 Conclusion......Page 1342
Acknowledgement......Page 1344
Bibliography......Page 1345
Summary table of issues and theses......Page 1354
1 Introduction......Page 1357
2 Approaches......Page 1360
3 Methodological issues......Page 1373
4 The nature of space and time......Page 1376
5 Relation with other open problems......Page 1390
6 Conclusion......Page 1393
Bibliographical note......Page 1394
Bibliography......Page 1395
1 Introduction......Page 1401
2 Symmetries of objects and of laws......Page 1402
3 Symmetry and group theory: Early history......Page 1407
4 What are symmetries in physics? Definitions and varieties......Page 1412
5 Some applications of symmetries in classical physics......Page 1415
6 General covariance in general relativity......Page 1419
7 Noether’s theorems......Page 1425
8 The interpretation of symmetries in classical physics......Page 1429
Bibliography......Page 1434
2 Preliminaries......Page 1439
3 Determinism and indeterminism in classical physics......Page 1445
4 Determinism in special relativistic physics......Page 1463
5 Determinism and indeterminism in ordinary QM......Page 1469
6 Determinism in classical GTR......Page 1479
7 Determinism in relativistic QFT......Page 1493
8 Determinism and quantum gravity......Page 1494
9 Conclusion......Page 1498
Bibliography......Page 1499
Index......Page 948