Philosophy of Mathematics: Selected Readings

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This is a useful anthology. I shall not argue its merits or demerits, but rather submit the following thesis: the shortcomings of virtually all of these theories are traceable to their unwarranted identification of mathematics with 20th century axiomatic mathematics. Bernays asserts that since "the customary manner of doing mathematics ... consists in establishing theories detached as much as possible from the thinking subject," any contrary view is "extreme" (p. 267). "The customary manner of doing mathematics" is thus glorified: it is tacitly assumed that "the customary manner" will reign supreme for all future. Otherwise it would not be "extreme" to suggest that "the customary manner" may not be infallible. Now of course one does not infer the absolute truth of an economic theory from its successful account of one particular society. But precisely this is being done in the case of philosophy of mathematics. Let us begin with the ever-foolish logical positivists. They define their position against Mill, who "maintained that [mathematical] propositions were inductive generalizations based on an extremely large number of instances" (Ayer, p. 317). Incidentally we later see Hempel making the exact same argument (p. 378), the positivist herd being predictable as always. But back to Ayer. The argument against Mill is that mathematical propositions are unfalsifiable: "Whatever instance we care to take, we shall always find that the situations in which a logical or mathematical principle might appear to be confuted are accounted for in such a way as to leave the principle unassailed" (p. 319). Therefore, the doctrine goes, mathematical propositions are analytic a priori, they are true "by virtue of definitions" (Hempel, p. 379), "none of them provide any information about any matter of fact" (p. 321), their truth do not depend on "facts about the world" (p. 316). Putting aside for the moment the trivial objection that some scientific laws (such as the law of inertia) are also analytic, this is still trivially false. Consider the discovery of the binomial series and other power series in the 17th century. These were obviously tested. There is a tacit appeal to "the customary manner of doing mathematics" here again. We now know that power series can be embedded in an axiomatic system that makes them true "by virtue of definitions." But this is a fact of experience. Only "facts about the world" tell us that mathematical propositions are susceptible to such treatment, i.e., that "the customary manner of doing mathematics" is all-pervasive. The claim that mathematics is analytic is the claim that another world would be impossible. Here is another passage in Ayer which plainly presupposes "the customary manner of doing mathematics": "Appeal to intuition [is] a source of danger to the geometer. It has, indeed, been shown that Euclid himself was guilty of ... make[ing] assumptions which are accidentally true of the particular figure he is using as an illustration" (p. 325). So? Were these theorems false? No. Were the proofs incomprehensible? No. To prove that intuition is dangerous it is enough to prove that the reasoning involved differs from "the customary manner of doing mathematics." There is no need to show that intuition has ever led to a single error (indeed, no such proof is offered). The logisists are putting the cart before the horse in assuming logic to be prior to arithmetic and mathematics. Hempel (p. 380), for example, simply takes for granted that a=c is implied by a=b and b=c and that this is prior to arithmetic. The possibility is never considered that we may know the instances of the rule with greater certainty than the rule itself and that the latter depends on the former. Likewise the possibility is never considered whether the reduction of mathematics to logic may be vicious: if the rules of logic are abstracted from primitives (e.g., arithmetic) then it is not surprising that latter may be defined in terms of the former. This ignorance is due to the modern conception that there are some transcendent "rules of the game" fixed before any specific axioms have been chosen. Without this contingent fact about "the customary manner of doing mathematics" the logicist reduction would have no basis whatever. Indeed, looking at the matter with an open mind suggests that the reduction is absurd since "our logical intuitions ... are self-contradictory" (Gödel, p. 452) whereas our arithmetical ones are not. Now let us look at the so-called "intuitionists." Their choice of "intuitions" has more to do with philosophical convenience than a serious study of intuition. For example: "However weak the position of intuitionism seemed after this period of mathematical development [i.e, non-Euclidean geometry], it has recovered by abandoning Kant's apriority of space but adhering the more resolutely to the apriority of time." (Brouwer, p. 80). It is obvious that they care more about "the customary manner of doing mathematics" than about intuition in their treatment of geometry, which they dismiss as "reduce[able] ... to arithmetic by means of the calculus of coordinates" (Brouwer, p. 80). To put it extremely mildly, "it seems a bit hasty to deny completely the existence of a geometrical intuition" (Bernays, p. 264). Anyone seriously interested in intuition should do what Poincaré did (not in this volume, of course), namely investigate the nature of geometrical intuition by means of detailed arguments. But Brouwer's attachment to "the customary manner of doing mathematics" and his eagerness to create an ism precluded this. The third major philosophy of mathematics goes under the name of formalism. But this is a diverse crowd. On the one had there is Curry's terribly naive position that "According to formalism the central concept in mathematics is that of a formal system" (p. 203). There is little point in noting how this captures "the customary manner of doing mathematics" and nothing else. On the other had there is Hilbert, who was not really advocating an ism at all. He was simply suggesting a research programme to prove the consistency of mathematics. This proposal was a very poor one, and of course one based on "the customary manner of doing mathematics," but it was no ism. This is why Curry thinks that Hibert's position is "peculiar": "The peculiar position of Hilbert in regard to consistency is thus no part of the formalist conception of mathematics, and it is therefore unfortunate that many persons identify formalism with what should be called Hilbertism." (Curry, p. 206). Apparently it is "peculiar" not want to start an ism. "The part of mathematical activity concerned with a good choice of axioms had no place in Hilbert's 'official' conception of mathematics. If there is any real justification for calling Hilbert's approach 'formalist' it is certainly this deficiency of Hilbert's official conception of mathematics and not his use of syntactic formulation in the foundations of mathematics." (Kreisel, p. 226). In other words: the only justification for calling Hilbert's approach formalist is to interpret is as an ism, even though it was never intended to be one.

Author(s): Paul Benacerraf, Hilary Putnam
Edition: 2
Publisher: Cambridge University Press
Year: 1984

Language: English
Pages: 304

BC2_0000.TIF......Page 1
BC2_0001.TIF......Page 2
BC2_0002.TIF......Page 3
BC2_0003.TIF......Page 4
BC2_0004.TIF......Page 5
BC2_0005.TIF......Page 6
BC2_0006.TIF......Page 7
BC2_0007.TIF......Page 8
BC2_0008.TIF......Page 9
BC2_0009.TIF......Page 10
BC2_0010.TIF......Page 11
BC2_0011.TIF......Page 12
BC2_0012.TIF......Page 13
BC2_0013.TIF......Page 14
BC2_0014.TIF......Page 15
BC2_0015.TIF......Page 16
BC2_0016.TIF......Page 17
BC2_0017.TIF......Page 18
BC2_0018.TIF......Page 19
BC2_0019.TIF......Page 20
BC2_0020.TIF......Page 21
BC2_0021.TIF......Page 22
BC2_0022.TIF......Page 23
BC2_0023.TIF......Page 24
BC2_0024.TIF......Page 25
BC2_0025.TIF......Page 26
BC2_0026.TIF......Page 27
BC2_0027.TIF......Page 28
BC2_0028.TIF......Page 29
BC2_0029.TIF......Page 30
BC2_0030.TIF......Page 31
BC2_0031.TIF......Page 32
BC2_0032.TIF......Page 33
BC2_0033.TIF......Page 34
BC2_0034.TIF......Page 35
BC2_0035.TIF......Page 36
BC2_0036.TIF......Page 37
BC2_0037.TIF......Page 38
BC2_0038.TIF......Page 39
BC2_0039.TIF......Page 40
BC2_0040.TIF......Page 41
BC2_0041.TIF......Page 42
BC2_0042.TIF......Page 43
BC2_0043.TIF......Page 44
BC2_0044.TIF......Page 45
BC2_0045.TIF......Page 46
BC2_0046.TIF......Page 47
BC2_0047.TIF......Page 48
BC2_0048.TIF......Page 49
BC2_0049.TIF......Page 50
BC2_0050.TIF......Page 51
BC2_0051.TIF......Page 52
BC2_0052.TIF......Page 53
BC2_0053.TIF......Page 54
BC2_0054.TIF......Page 55
BC2_0055.TIF......Page 56
BC2_0056.TIF......Page 57
BC2_0057.TIF......Page 58
BC2_0058.TIF......Page 59
BC2_0059.TIF......Page 60
BC2_0060.TIF......Page 61
BC2_0061.TIF......Page 62
BC2_0062.TIF......Page 63
BC2_0063.TIF......Page 64
BC2_0064.TIF......Page 65
BC2_0065.TIF......Page 66
BC2_0066.TIF......Page 67
BC2_0067.TIF......Page 68
BC2_0068.TIF......Page 69
BC2_0069.TIF......Page 70
BC2_0070.TIF......Page 71
BC2_0071.TIF......Page 72
BC2_0072.TIF......Page 73
BC2_0073.TIF......Page 74
BC2_0074.TIF......Page 75
BC2_0075.TIF......Page 76
BC2_0076.TIF......Page 77
BC2_0077.TIF......Page 78
BC2_0078.TIF......Page 79
BC2_0079.TIF......Page 80
BC2_0080.TIF......Page 81
BC2_0081.TIF......Page 82
BC2_0082.TIF......Page 83
BC2_0083.TIF......Page 84
BC2_0084.TIF......Page 85
BC2_0085.TIF......Page 86
BC2_0086.TIF......Page 87
BC2_0087.TIF......Page 88
BC2_0088.TIF......Page 89
BC2_0089.TIF......Page 90
BC2_0090.TIF......Page 91
BC2_0091.TIF......Page 92
BC2_0092.TIF......Page 93
BC2_0093.TIF......Page 94
BC2_0094.TIF......Page 95
BC2_0095.TIF......Page 96
BC2_0096.TIF......Page 97
BC2_0097.TIF......Page 98
BC2_0098.TIF......Page 99
BC2_0099.TIF......Page 100
BC2_0100.TIF......Page 101
BC2_0101.TIF......Page 102
BC2_0102.TIF......Page 103
BC2_0103.TIF......Page 104
BC2_0104.TIF......Page 105
BC2_0105.TIF......Page 106
BC2_0106.TIF......Page 107
BC2_0107.TIF......Page 108
BC2_0108.TIF......Page 109
BC2_0109.TIF......Page 110
BC2_0110.TIF......Page 111
BC2_0111.TIF......Page 112
BC2_0112.TIF......Page 113
BC2_0113.TIF......Page 114
BC2_0114.TIF......Page 115
BC2_0115.TIF......Page 116
BC2_0116.TIF......Page 117
BC2_0117.TIF......Page 118
BC2_0118.TIF......Page 119
BC2_0119.TIF......Page 120
BC2_0120.TIF......Page 121
BC2_0121.TIF......Page 122
BC2_0122.TIF......Page 123
BC2_0123.TIF......Page 124
BC2_0124.TIF......Page 125
BC2_0125.TIF......Page 126
BC2_0126.TIF......Page 127
BC2_0127.TIF......Page 128
BC2_0128.TIF......Page 129
BC2_0129.TIF......Page 130
BC2_0130.TIF......Page 131
BC2_0131.TIF......Page 132
BC2_0132.TIF......Page 133
BC2_0133.TIF......Page 134
BC2_0134.TIF......Page 135
BC2_0135.TIF......Page 136
BC2_0136.TIF......Page 137
BC2_0137.TIF......Page 138
BC2_0138.TIF......Page 139
BC2_0139.TIF......Page 140
BC2_0140.TIF......Page 141
BC2_0141.TIF......Page 142
BC2_0142.TIF......Page 143
BC2_0143.TIF......Page 144
BC2_0144.TIF......Page 145
BC2_0145.TIF......Page 146
BC2_0146.TIF......Page 147
BC2_0147.TIF......Page 148
BC2_0148.TIF......Page 149
BC2_0149.TIF......Page 150
BC2_0150.TIF......Page 151
BC2_0151.TIF......Page 152
BC2_0152.TIF......Page 153
BC2_0153.TIF......Page 154
BC2_0154.TIF......Page 155
BC2_0155.TIF......Page 156
BC2_0156.TIF......Page 157
BC2_0157.TIF......Page 158
BC2_0158.TIF......Page 159
BC2_0159.TIF......Page 160
BC2_0160.TIF......Page 161
BC2_0161.TIF......Page 162
BC2_0162.TIF......Page 163
BC2_0163.TIF......Page 164
BC2_0164.TIF......Page 165
BC2_0165.TIF......Page 166
BC2_0166.TIF......Page 167
BC2_0167.TIF......Page 168
BC2_0168.TIF......Page 169
BC2_0169.TIF......Page 170
BC2_0170.TIF......Page 171
BC2_0171.TIF......Page 172
BC2_0172.TIF......Page 173
BC2_0173.TIF......Page 174
BC2_0174.TIF......Page 175
BC2_0175.TIF......Page 176
BC2_0176.TIF......Page 177
BC2_0177.TIF......Page 178
BC2_0178.TIF......Page 179
BC2_0179.TIF......Page 180
BC2_0180.TIF......Page 181
BC2_0181.TIF......Page 182
BC2_0182.TIF......Page 183
BC2_0183.TIF......Page 184
BC2_0184.TIF......Page 185
BC2_0185.TIF......Page 186
BC2_0186.TIF......Page 187
BC2_0187.TIF......Page 188
BC2_0188.TIF......Page 189
BC2_0189.TIF......Page 190
BC2_0190.TIF......Page 191
BC2_0191.TIF......Page 192
BC2_0192.TIF......Page 193
BC2_0193.TIF......Page 194
BC2_0194.TIF......Page 195
BC2_0195.TIF......Page 196
BC2_0196.TIF......Page 197
BC2_0197.TIF......Page 198
BC2_0198.TIF......Page 199
BC2_0199.TIF......Page 200
BC2_0200.TIF......Page 201
BC2_0201.TIF......Page 202
BC2_0202.TIF......Page 203
BC2_0203.TIF......Page 204
BC2_0204.TIF......Page 205
BC2_0205.TIF......Page 206
BC2_0206.TIF......Page 207
BC2_0207.TIF......Page 208
BC2_0208.TIF......Page 209
BC2_0209.TIF......Page 210
BC2_0210.TIF......Page 211
BC2_0211.TIF......Page 212
BC2_0212.TIF......Page 213
BC2_0213.TIF......Page 214
BC2_0214.TIF......Page 215
BC2_0215.TIF......Page 216
BC2_0216.TIF......Page 217
BC2_0217.TIF......Page 218
BC2_0218.TIF......Page 219
BC2_0219.TIF......Page 220
BC2_0220.TIF......Page 221
BC2_0221.TIF......Page 222
BC2_0222.TIF......Page 223
BC2_0223.TIF......Page 224
BC2_0224.TIF......Page 225
BC2_0225.TIF......Page 226
BC2_0226.TIF......Page 227
BC2_0227.TIF......Page 228
BC2_0228.TIF......Page 229
BC2_0229.TIF......Page 230
BC2_0230.TIF......Page 231
BC2_0231.TIF......Page 232
BC2_0232.TIF......Page 233
BC2_0233.TIF......Page 234
BC2_0234.TIF......Page 235
BC2_0235.TIF......Page 236
BC2_0236.TIF......Page 237
BC2_0237.TIF......Page 238
BC2_0238.TIF......Page 239
BC2_0239.TIF......Page 240
BC2_0240.TIF......Page 241
BC2_0241.TIF......Page 242
BC2_0242.TIF......Page 243
BC2_0243.TIF......Page 244
BC2_0244.TIF......Page 245
BC2_0245.TIF......Page 246
BC2_0246.TIF......Page 247
BC2_0247.TIF......Page 248
BC2_0248.TIF......Page 249
BC2_0249.TIF......Page 250
BC2_0250.TIF......Page 251
BC2_0251.TIF......Page 252
BC2_0252.TIF......Page 253
BC2_0253.TIF......Page 254
BC2_0254.TIF......Page 255
BC2_0255.TIF......Page 256
BC2_0256.TIF......Page 257
BC2_0257.TIF......Page 258
BC2_0258.TIF......Page 259
BC2_0259.TIF......Page 260
BC2_0260.TIF......Page 261
BC2_0261.TIF......Page 262
BC2_0262.TIF......Page 263
BC2_0263.TIF......Page 264
BC2_0264.TIF......Page 265
BC2_0265.TIF......Page 266
BC2_0266.TIF......Page 267
BC2_0267.TIF......Page 268
BC2_0268.TIF......Page 269
BC2_0269.TIF......Page 270
BC2_0270.TIF......Page 271
BC2_0271.TIF......Page 272
BC2_0272.TIF......Page 273
BC2_0273.TIF......Page 274
BC2_0274.TIF......Page 275
BC2_0275.TIF......Page 276
BC2_0276.TIF......Page 277
BC2_0277.TIF......Page 278
BC2_0278.TIF......Page 279
BC2_0279.TIF......Page 280
BC2_0280.TIF......Page 281
BC2_0281.TIF......Page 282
BC2_0282.TIF......Page 283
BC2_0283.TIF......Page 284
BC2_0284.TIF......Page 285
BC2_0285.TIF......Page 286
BC2_0286.TIF......Page 287
BC2_0287.TIF......Page 288
BC2_0291.TIF......Page 289
BC2_0292.TIF......Page 290
BC2_0293.TIF......Page 291
BC2_0294.TIF......Page 292
BC2_0295.TIF......Page 293
BC2_0296.TIF......Page 294
BC2_0297.TIF......Page 295
BC2_0298.TIF......Page 296
BC2_0299.TIF......Page 297
BC2_0300.TIF......Page 298
BC2_0301.TIF......Page 299
BC2_0302.TIF......Page 300
BC2_0303.TIF......Page 301
BC2_0304.TIF......Page 302
BC2_0305.TIF......Page 303
BC2_0306.TIF......Page 304