Phased arrays are an important group of antennas commonly used in radar, space communication, broadcasting, and RFID (radio frequency identification) systems. This authoritative resource provides engineers with a detailed description of ideal array element characteristics to help them estimate the quality of development of real-world phased array antennas. Practitioners find several approaches to optimum phased array design, allowing them to provide specified array gain in a specific region of scan, using a minimum number of expensive, controlled devices. Moreover, this practical book presents important numerical methods that engineers can use to model and optimize phased array structure to obtain the best array characteristics that the chosen structure can provide.
Author(s): Sergei P. Skobelev
Edition: 1
Publisher: Artech House
Year: 2011
Language: English
Pages: 285
Tags: Приборостроение;Антенно-фидерные устройства;
Phased Array Antennas with Optimized Element Patterns......Page 2
Contents......Page 8
Preface......Page 12
Introduction......Page 14
1.1.1 Element and Array Radiation Patterns......Page 24
1.1.2 Array Factor......Page 25
1.1.3 Directivity, Gain, and Efficiency......Page 28
1.2.1 Quasi-Periodic Excitation......Page 29
1.2.2 Aperiodic Excitation......Page 32
1.3.1 The Highest Level......Page 35
1.3.2 Contours of the Ideal Element Pattern......Page 37
1.3.3 Element Gain on Ideal Contour......Page 39
1.3.4 Ideal Element Efficiency and Mutual Coupling......Page 40
1.3.5 On Realizability of the Ideal Contour Element Pattern......Page 43
1.3.6 Properties of Orthogonality......Page 46
1.4 Element Pattern with Nonideal Contour......Page 49
1.5 Minimum Number of Controlled Elements......Page 51
1.5.1 Formulation......Page 52
1.5.2 Element Use Factor......Page 53
1.6.1 Fields at Quasi-Periodic Excitation......Page 55
1.6.2 Excitation of One Array Input......Page 58
1.6.3 Ideal Array Element Characteristics......Page 59
References......Page 64
Appendix 1A Array Element Gain on the Ideal Contour......Page 68
Appendix 1B On the Forming of Orthogonal Beams by a Planar Aperture......Page 70
Appendix 1C On the Efficiency of a Dense Array Shaping a Contour Radiation Patter......Page 75
2.1.1 Arrays Based on Butler Matrices......Page 78
2.1.2 Network of J. T. Nemit......Page 79
2.1.3 Network of R. J. Mailloux and P. R. Franchi......Page 80
2.1.4 Network of R. F. Frazita, A. R. Lopez, and R. J. Giannini......Page 81
2.1.5 Network of E. C. DuFort......Page 82
2.2 Multicascaded Chessboard Network......Page 83
2.2.1 Analysis of the Radiation Characteristics......Page 84
2.2.2 Statement and Solution of the Synthesis Problem......Page 87
2.3 Experimental Study of the Chessboard Network......Page 90
2.4 A Linear Array with Chessboard Network as a Feedof a Parabolic Cylindrical Antenna......Page 93
2.4.1 Formulation of the Problem......Page 94
2.4.3 Results, Comparison, and Discussion......Page 99
2.5 Quasioptical Analogs of the Chessboard Network......Page 103
2.5.1 Features of the Array Geometry......Page 104
2.5.2 Subarray Pattern......Page 106
2.5.3 Results of Calculations......Page 107
References......Page 109
3.1 A Simplified Model......Page 114
3.2.2 Mathematical Model......Page 119
3.2.3 Highest Characteristics at Dual-Mode Excitation......Page 121
3.2.5 Numerical Results......Page 124
3.3.1 Features of Geometry and Optimum Excitation......Page 127
3.3.2 Computed Array Characteristics......Page 129
3.4 Experimental Study of the H-Plane Array......Page 132
References......Page 134
Appendix 3A Calculation of the Scattering Matrix Elements for the Slots in the Waveguide Walls......Page 136
Appendix 3B Analysis of the Modified H-Plane Array Aperture......Page 138
4.1 On Application of Reactive Loads in Array Antennas......Page 144
4.2 Modulated Corrugated Structure Excited by Electric and Magnetic Currents......Page 146
4.2.1 Quasi-Periodic Excitation......Page 147
4.2.2 Radiation Pattern at Local Excitation......Page 153
4.2.3 Shaping of Sector Radiation Pattern......Page 154
4.3 Modulated Corrugated Structure with Active Waveguides......Page 157
4.3.1 Analysis and Synthesis......Page 158
4.3.2 Calculated and Measured Results......Page 160
References......Page 162
5.1 Waveguide-Dielectric Arrays and Structures......Page 166
5.2 Overview of the Methods and Results......Page 169
5.2.2 Incomplete Galerkin Method......Page 170
5.2.4 Method of Surface Integral Equations and Method of Auxiliary Sources......Page 171
5.2.5 Method of Integral Equations for Polarization Currents......Page 172
5.2.6 Finite Element Method and Commercial Codes......Page 173
5.3.1 Array Geometry and Excitation......Page 174
5.3.2 Representation of the Fields......Page 175
5.3.3 Projective Matching of the Fields on the Boundaries......Page 176
5.3.4 Application of the Finite Element Method......Page 178
5.3.5 Algebraic System and Array Characteristics......Page 180
5.3.6 Realization, Validation, and Numerical Results......Page 181
5.4.1 Statement of the Problem and Representation of the Fields......Page 185
5.4.2 Relations Resulted from Conditions on the Boundaries......Page 187
5.4.3 Finite Element Method for H-Polarized Waves......Page 189
5.4.4 Total Algebraic System......Page 191
5.4.5 Realization of the Algorithm and Discussion of the Array Characteristics......Page 192
5.5.1 Statement of the Problem and Fields in the Structure......Page 199
5.5.2 The Hybrid Projective Method......Page 203
5.5.3 Array Characteristics......Page 208
5.5.4 Results and Discussion......Page 209
References......Page 213
Appendix 5A Explicit Expressions for Integrals (5.22), (5.23), and (5.24)
......Page 216
Appendix 5B Values of Integrals (5.119)......Page 217
6.1.1 Breadboard Design......Page 218
6.1.2 Results of Measurement......Page 220
6.2.1 Statement of the Problem and Method of Solution......Page 223
6.2.2 Numerical Results and Discussion......Page 228
6.3.1 Geometry, Excitation, and Field Representation......Page 232
6.3.2 Algebraic System and Array Characteristics......Page 235
6.3.3 Results of Numerical Modeling......Page 237
6.3.4 Results of Breadboarding......Page 244
6.4.1 Problem Formulation and Solution......Page 248
6.4.2 Results of Calculation and Discussion......Page 251
6.5 Arrays of Waveguides with Semitransparent Wire-Grid Walls......Page 256
6.5.1 Statement and Solution of the Problem......Page 257
6.5.2 Realization and Validation of the Algorithm......Page 261
6.5.3 Results of Analysis and Optimization......Page 262
References......Page 266
Appendix 6A Calculation of the Green’s Function for Doubly PeriodicStructures by the Method of M. M. Ivanishin......Page 269
Appendix 6B Accelerating the Convergence of Series (6.57)......Page 273
About the Author......Page 276
Index......Page 278