The application of computer-aided planning, navigation and robotics in surgery provides significant advantages due to today’s sophisticated techniques of patient-data visualization in combination with the flexibility and precision of novel robots. Robotic surgery is set to revolutionize surgical procedures. Augmented with 3D image-guidance technology these tools give finer control over sensitive movements in diseased areas and therefore allow more surgical procedures to be performed using minimally invasive techniques. This book provides an overview of new image-guided procedures in all areas of medical application.
Author(s): Thorsten M. Buzug, Tim C. Lueth
Publisher: World Scientific Publishing Company
Year: 2004
Language: English
Pages: 536
CONTENTS......Page 12
Foreword......Page 6
Registration......Page 20
Purpose:......Page 22
1. Introduction......Page 23
2. Methods......Page 24
4. Discussion......Page 26
5. Conclusions......Page 28
References......Page 29
1. Introduction......Page 30
2.2. Registration of Ultrasound Volumes......Page 31
2.3. Validation of Non-Rigid Registration......Page 33
3.2. Non-Rigid Registration Parameters......Page 34
3.3. Validation of Non-Rigid Registration......Page 35
4. Conclusion......Page 36
References......Page 37
1. Introduction......Page 38
2. Methods......Page 39
3. Results......Page 40
4. Discussion......Page 42
References......Page 43
1. Introduction......Page 45
3.1. Global Registration......Page 46
4. Results......Page 47
6. Conclusion......Page 48
References......Page 49
1. Introduction......Page 50
2. Patients and Methods......Page 51
3. Results......Page 52
4. Discussion......Page 53
References......Page 54
1.1. The system......Page 56
3. Solution......Page 57
3.2. Sofnvare......Page 58
4.2. Intraoperative......Page 59
5.3. Dependencies......Page 60
References......Page 61
1. Introduction......Page 62
2.1. Recording and optical reconstruction......Page 63
3. Automatic 3D Scan Matching......Page 64
3.1. Matching as an Optimization Problem......Page 65
3.2. Time Complexity Reduction......Page 66
3.3. Matching Multiple 3D Reliefs......Page 67
Acknowledgment......Page 68
References......Page 69
1. Introduction......Page 70
3. Methods......Page 71
4. Results and Discussion......Page 75
References......Page 76
1. Introduction......Page 78
2.3. Marker detection......Page 79
3. Results......Page 80
4. Discussion......Page 81
5. Conclusion......Page 82
References......Page 83
Advanced Navigation and Motion Racking......Page 86
1. Introduction......Page 88
2. Material & Methods......Page 89
Biliary Tract Tumors:......Page 90
Liver Transplant Recipients:......Page 91
3. Discussion......Page 92
Biliary Tract Tumors:......Page 93
References......Page 94
1. Introduction......Page 96
3. Generation of Audio Features......Page 97
4.1. Neural Networks......Page 98
4.2. Support Vector Machines......Page 100
4.3. Hidden-Markov-Models......Page 101
5. Results and Conclusions......Page 102
References......Page 103
2. Application Area and Background......Page 104
3. Components of the Experimental Setup......Page 106
4. Reproducibility of the Heart Phantoms Motion......Page 108
5. Key Experiments for Interventional Navigation......Page 109
6. Conclusions......Page 110
References......Page 111
1. Introduction......Page 112
2. Robotic Setup......Page 114
2.3. Control strategy......Page 115
3.1. Adaptive filtering......Page 116
4.2. In-vivo Results......Page 117
References......Page 118
Occlusion-Robust, Low-Latency Optical Tracking Using a Modular Scalable System Architecture A. Kopfle, R. Manner, M. Schill, M. Rautmann, P. P. Pott, M. L. R. Schwarz, H. P. Schalf, A. Wagner; E. Badreddin and P. Weiser......Page 120
2.1. Overview......Page 121
2.2. Camera Modules......Page 122
2.3. Control 13 Reconstruction Module......Page 123
2.4. Calibration......Page 124
4. Discussion......Page 125
5. Future Work......Page 126
References......Page 127
1. State of the art in optical position measurement......Page 128
2.1. Coating material......Page 131
2.2. Adhesive......Page 132
2.3. Design of the adhesive joint......Page 133
2.4. Autoclavation......Page 134
4. Acknowledgements......Page 135
2. Material and Methods......Page 137
3. Results......Page 138
References......Page 139
1.1. Principle......Page 141
1.3. Applications......Page 142
2.1. Navigation Systems for Surgery......Page 143
3. Navigation System Design for TMS......Page 144
4. Results......Page 145
Mapping of the Visual Cortex......Page 146
References......Page 147
2. Clinical case......Page 148
3. Results......Page 149
4. Conclusion......Page 150
1. Introduction......Page 152
2. Materials and Methods......Page 153
References......Page 155
1. Background......Page 156
2. Materials and Methods......Page 157
3. Results......Page 158
4. Discussion......Page 159
References......Page 161
1. Background......Page 163
2. Materials and Methods......Page 164
3. Results......Page 166
4. Discussion......Page 167
References......Page 169
1. Introduction......Page 171
2.1. Geometric description of the constraint......Page 172
2.3. Experimental results......Page 174
3.2. Solution......Page 175
3.3. Experimental results......Page 176
References......Page 178
Prospective Head Motion Compensation by Updating the Gradients of the MRT C. Dold, E. A. Firle, G. Sakas, M. Zaitsev, O. Speck, J. Hennig and B. Schwald......Page 179
2. Material and Methods......Page 180
3. Result......Page 182
4. Discussion......Page 184
References......Page 186
Calibration and Accuracy Analysis......Page 188
1. Introduction......Page 190
2. Pulsed laser radar system......Page 191
3. Registration algorithm and verification......Page 192
4. Clinical test......Page 193
References......Page 198
Accuracy in Computer Assisted Implant Dentristry. Image Guided Template Production vs. Burr Tracking G. Widmann, R. Widmann, E. Widmann and R. J. Bale......Page 199
2. Methods......Page 200
3. Results......Page 203
4. Discussion......Page 204
References......Page 205
1. Objectives / Background......Page 206
2. Design / Methods......Page 207
3. Results......Page 208
4. Conclusion......Page 209
References......Page 210
2. Material and Methods......Page 212
3. Results......Page 215
4. Conclusion......Page 216
1. Introduction......Page 217
2. Materials and Methods......Page 218
3. Results......Page 220
4. Discussions......Page 221
References......Page 222
1. Introduction......Page 223
2. The physical phantom......Page 224
3. The digital phantom......Page 225
3.2. Modeling the deterministic signal f......Page 226
3.3. Modeling the noise signal m......Page 227
4. Results......Page 228
4.1.1. Results on Group A and Group B......Page 229
4.2. Evaluating LITCIT dose calculation on Hepa Vision vessel segmentation results......Page 230
5. Discussion......Page 231
References......Page 232
Clinical Case Studies......Page 234
2. Clinical case......Page 236
3. Solution......Page 238
4. Conclusion......Page 240
References......Page 241
1. Introduction......Page 242
2.1. Functional MRl......Page 243
2.4. Analysis of lesion distance to functional areas......Page 244
2.7. Data analysis and statistical analysis......Page 245
3.3. Group II (Distance 5-10 mm between f-MRl area and lesion)......Page 246
3.4. Group I (Distance 0-5 mm between f-MRI area and lesion)......Page 247
References......Page 248
2. Material and Methods......Page 250
3. Preliminary clinical results of transmucosal interforaminal implantation with computer assisted navigation......Page 252
Acknowledgments......Page 253
References......Page 254
2. Methods......Page 255
3. Results......Page 256
References......Page 257
1. Introduction......Page 259
2. Materials and Methods......Page 260
3. Results......Page 261
References......Page 262
1. Background......Page 263
2. Patients, Materials and Methods......Page 264
3. Results......Page 267
4. Discussion......Page 268
References......Page 269
1. Background......Page 271
2. Materials and Methods......Page 272
4. Discussion......Page 275
References......Page 276
Simulation and Modelling......Page 278
1. Introduction......Page 280
2. Related work......Page 281
3.2. Haptic surface rendering......Page 282
3.2.1. Tool representation......Page 283
3.3. Volume interaction......Page 284
4. Application......Page 286
References......Page 288
1. Introduction......Page 289
2. System Requirements......Page 290
3.1. DRR calculation......Page 291
3.3. Optimization in preferred directions......Page 292
Three x-ray sources......Page 293
Two x-ray sources......Page 294
5. Discussion and conclusion......Page 295
References......Page 296
1. Introduction......Page 297
2.1. Description of the laparoscopic setup......Page 298
2.2. Modeling of the stitching task......Page 299
A/ Finding initial and final positions......Page 301
4. Path planning for the needle......Page 302
References......Page 304
1. Introduction......Page 305
2. Experimental Methods......Page 306
3. Milling Model Formulation......Page 307
4. Results......Page 308
References......Page 312
1. Introduction......Page 314
2.1. Segmentation......Page 315
2.2. Reconstruction......Page 316
4. Thermal modelling......Page 318
5. Modular integration based on the APIA approach......Page 320
References......Page 321
1. Introduction......Page 322
3. The Simulation Model......Page 323
4. Discretization......Page 325
Acknowledgements......Page 328
References......Page 329
1. Introduction......Page 330
2. A Toolchain for Maxillo-facial Surgery Planning......Page 332
3. The Virtual Bone Cutting Tool......Page 333
4. Distraction Simulation......Page 335
5 . Conclusion......Page 336
References......Page 337
Robotic Interventions......Page 338
1. Introduction......Page 340
3. Principles of navigation......Page 341
3.2. Global navigation with preoperative map......Page 342
3.3. Global navigation with intraoperative map......Page 343
3.5. Control......Page 344
4. General Navigation System Architecture......Page 345
Acknowledgements......Page 347
References......Page 348
Robotic Surgery in Neurosurgical Field H. Iseki, Y. Muragaki, R. Nakamura, M. Hayashi, T. Hori, K. Takakura, S. Ornori, K. Nishizawa and I. Sakuma......Page 349
2. Advances in Computer-aided and Robotic Surgery......Page 350
4. Robotic Surgery and Intelligent Operating Theater......Page 351
5. Computer-aided Design and Computer-aided manipulation (CAD- CAM) Laser System for precision-guided surgery......Page 352
6. MR Compatible Micro-manipulator......Page 353
7. Gamma Knife Model C Auto-positioning system (C-APS)......Page 354
8. Discussion......Page 355
References......Page 356
1. Introduction......Page 357
3. Hygiene Issues......Page 358
4. Testing......Page 359
5. Modifications......Page 361
References......Page 362
1. Introduction......Page 363
3.1. Mathematical Basics......Page 365
3.2. Ground Truth......Page 368
4.1. Preliminary Results......Page 369
4.2. Control of surgical laser drilling......Page 370
References......Page 371
1. Introduction......Page 372
2. Surgical needs and conceptual approach......Page 373
3. The Virtuose technology......Page 375
4.1. Virtual reality conditions......Page 376
4.2. Augmented reality conditions......Page 377
4.3. Results......Page 378
References......Page 379
1.1. Robot vs. manipulator in keyhole surgery......Page 380
1.2. lntraoperative measurements during keyhole surgery......Page 381
2.1. Set-up of the measurement device......Page 382
2.3. Functional model......Page 383
2.4. Sequences......Page 385
4. Conclusion......Page 386
References......Page 387
1. Introduction......Page 388
2. Material & Method......Page 389
3. Results......Page 391
References......Page 393
1. Introduction......Page 394
3. Results......Page 395
5. Conclusion......Page 400
References......Page 401
1. Introduction......Page 402
2.2. Inclusion function......Page 404
3.1. Context......Page 405
3.2. Simulation......Page 406
4. Conclusion......Page 408
References......Page 409
1. Introduction......Page 410
2. The seven surgical robot risks......Page 411
3. Methods of Risk Analysis......Page 412
References......Page 414
1. Introduction......Page 416
2. Two Examples‘......Page 417
3. Interdisciplinary Argumentation Including Ethical Reflection......Page 420
References......Page 423
Sensor Feed-Back Systems......Page 424
1. Introduction......Page 426
2. Haptic Sensor Actuator System......Page 427
3. Remote Palpation Based on Real Time Elastography......Page 428
4. Medical Results of Elastography......Page 430
5. Electrorheological Fluids as a Basis for the Tactile Display......Page 431
6. Conclusion......Page 432
References......Page 433
1.1. Needle insertion procedures......Page 434
1.2. Why is it necessary to study forces ?......Page 435
2.1. Methods......Page 436
2.2.1. Ranges of forces......Page 437
2.2.2. Evolution of longitudinal force......Page 438
2.3. Modeling of the Liver......Page 439
3. Conclusion......Page 440
References......Page 441
1. Introduction......Page 442
2. Haptic Device: VISHARDJ......Page 443
4. Controller Algorithm......Page 444
6. User Experiments......Page 446
7. Experimental Results and Discussion......Page 448
8. Conclusion......Page 449
References......Page 450
1. Introduction......Page 451
2. New design concept for medical instrumentation......Page 453
3.2. Sensor structure and technological steps of the fabrication process......Page 455
3.3. Mechanical simulations and experimental results......Page 456
3.4. Characterisation of the sensor......Page 457
4. Conclusions......Page 458
References......Page 459
1. Introduction......Page 460
2. Planning- and Control System......Page 461
3. Hardware Set-up......Page 462
4. Closed-loop Robot Control......Page 463
5. Topology Comparison and Registration......Page 464
6. Evaluation of Tissue Differentiation System......Page 466
References......Page 467
1. Introduction......Page 469
2.1. Combining a 3 0 digitizing system and a mechatronic arm......Page 470
2.2. Automatic tracking of the MAS to the patientposition......Page 473
3. Prototype System Setup......Page 474
4. Results......Page 475
References......Page 476
Visualization and Augmented Reality......Page 478
1. Introduction......Page 480
2. Assembly......Page 481
3. Calibration......Page 482
4. Improvements and Methods......Page 483
4.1. Results and discussion......Page 484
References......Page 486
1. Introduction......Page 487
2.1. Tracking Method......Page 489
2.2. System Overview......Page 490
2.3. Camera Tracking......Page 491
2.5. Protocol of Tracking Setup......Page 492
3.1. Improving the Accuracy of Encoder Tracking......Page 493
References......Page 494
1. Introduction......Page 495
2. 3D Modeling of Organs and Surgical Planning......Page 496
3. Surgical Simulation......Page 497
4. Augmented Reality: The Transparent Patient......Page 499
References......Page 502
1. Introduction......Page 504
2.3. Functional MRI - Data Analysis......Page 505
3.3 Mapping the Surface to Pararneterizable Shapes......Page 506
4.1. Minimizing Distortions......Page 507
1. Introduction......Page 509
2. Methods......Page 510
3. Results......Page 513
4. Discussion and outlook......Page 515
References......Page 516
List of Authors......Page 518