Personalized Mechanical Ventilation: Improving Quality of Care

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

In dealing with the unprecedented COVID-19 pandemic, there are an increased number of patients requiring personalized management as the disease pathology varies. With variable lung compliance and airway resistance as well as the severity of the disease, one size will not fit all patients. 

 

This book is problem-oriented with evidence-based discussions of the daily encountered scenarios in the ICU for mechanically ventilated patients, dealing with the pathology, monitoring and troubleshooting facing intensivists daily. These scenarios are managed utilizing a goal-directed approach and algorithms to achieve these goals. All chapters contain an explanation of a different solution illustrating the respiratory mechanics, physiology and pathology involved in such a scenario. Each chapter also closes with a take-home message to summarize the content. In addition to describing the ventilation of different patient categories, this text also features ventilation cases specific to COVID-19 including airway management in the enhanced air born isolated patient, pulmonary embolism, different states of shock and differential lung ventilation. There is also a specific chapter on monitoring mechanical ventilation with point of care ultrasound, which is an available modality in most ICUs. Another unique chapter describes how to connect more than one patient to one ventilator in case of a shortage of machines.

 

Written by experts in the field, Personalized Mechanical Ventilation is a timely and valuable resource for critical care physicians, nurses and respiratory therapists on the front lines of both COVID-19 and day-to-day care of mechanically ventilated patients in the ICU. 

Author(s): Jorge Hidalgo, Robert C. Hyzy, Ahmed Mohamed Reda Taha, Yasser Younis A. Tolba
Publisher: Springer
Year: 2022

Language: English
Pages: 370
City: Cham

Preface
Prologue
Special Thanks
Contents
Respiratory Physiology and Mechanics at the Bedside
1 Introduction
2 Lung Volumes and Capacity
3 Equation of Motion
4 Alveolar Pressure (Palv)
5 Driving Pressure
6 Transpulmonary Pressure
7 Intrinsic PEEP
8 Respiratory System Compliance
9 Resistance
10 Expiratory Time Constant
11 Diagnosis of the Lung Conditions
12 Optimization of Ventilatory Settings
13 Monitoring of Prone Position
14 Troubleshooting of Respiratory Events
15 Dead Space/Dead Space Fraction
16 Measuring Patient Effort and Work of Breathing
17 Airway Occlusion Pressure (P0.1)
18 Mechanical Power
19 Conclusion
19.1 Stress Index
References
Principles of Mechanical Ventilation
1 Less Is More in Mechanical Ventilation
1.1 History of Ventilation
1.2 Definition
1.3 Epidemiology
1.4 Types of Ventilation
1.5 Objectives
1.6 Indications
1.7 Duration of Mechanical Support
1.8 Limitations
1.9 Complications
2 Personalized Mechanical Ventilation Tailored to Lung Morphology
2.1 Systemic Effects of the Mechanical Ventilation
2.2 Cardiovascular System
2.3 Pulmonary System
2.4 Renal System
2.5 Neurological System
2.6 Adaptation of the Patient to the Mechanical Ventilation
References
Humidification and Ventilator Circuit
1 Humidity
2 Methods of Humidification
3 Heat and Moisture Exchanger (HME)
4 Ventilator Circuit
References
Airway Management During Mechanical Ventilation: COVID-19
1 Introduction
2 Epidemiology
3 Approach to the Intubated Patient
4 ARDS Phenotypes in COVID-19
5 Respiratory Treatment
6 Small Tidal Volumes
7 Positive End-Expiratory Pressure (PEEP)
8 Plateau Pressure
9 Prone Position
10 Tracheostomy
References
High-Flow Nasal Cannula
1 Introduction
2 Set-Up and Mechanism of Action
2.1 Set-Up
2.2 Mechanism of Action
3 Indications
4 Evidence
4.1 Acute Respiratory Failure
4.2 Post-operative Patients
4.3 Post-extubation Respiratory Support in Non-surgical Patients
5 Contraindications
6 Adverse Effects
7 Conclusions
References
Modes of Mechanical Ventilation
1 Introduction
2 Types of Mechanical Breath
3 Modes of Mechanical Ventilation
4 Conventional Modes of Ventilation
4.1 Assist Control Mode (A/C)
4.2 Synchronized Intermittent Mandatory Ventilation (SIMV)
4.3 Pressure Support Ventilation (PSV)
5 Adaptive Modes of Ventilation
5.1 Adaptive A/C Mode
5.2 Adaptive SIMV
5.3 Adaptive Pressure Support (Volume Support)
5.4 Adaptive Support Ventilation (ASV)
6 Biphasic Ventilation
6.1 Airway Pressure Release Ventilation (APRV)
7 Proportional Modes of Ventilation
7.1 Proportional Assist Ventilation (PAV+)
7.2 Neurally Adjusted Ventilatory Assist (NAVA)
7.3 NAVA Variable
References
Conventional Mechanical Ventilation in Acute Respiratory Failure
1 What Is Mechanical Ventilation?
2 Objectives of Mechanical Ventilation
3 Basic Components of Ventilation
4 Basic Modes of Ventilation [1, 5, 7, 13]
5 General Ventilator Settings [1, 18]
6 Potential Effects of Mechanical Ventilation
References
Mechanical Ventilation in the Trauma Patient
1 Thoracic Trauma
1.1 Tension Pneumothorax
1.2 Open Pneumothorax
1.3 Flail Chest
2 Cardiac Injury
3 Special Cases
3.1 Primary Blast Lung Injury
3.1.1 Abdominal Trauma
3.1.2 Head Trauma
3.2 Management of a Patient over Mechanical Ventilator
4 ECMO Strategies
References
Mechanical Ventilation in the Obese Patient
1 Introduction
2 Definition
3 Pathophysiology Ventilation Aspects
4 Intubation Consideration
5 Obesity Paradox
6 The Ventilator and Settings
7 Rescue Therapies
8 Conclusion
References
Postoperative Mechanical Ventilation: Fast Track
1 Introduction
2 Definitions: Is Fast Track Just Accelerated Weaning?
3 Primum Non Nocere
4 Predictors and Criteria for Weaning and Extubation
4.1 Criteria for Weaning and Extubation
5 Conclusion
References
Mechanical Ventilation in COVID
1 Airway Management
2 When to Intubate?
3 Mechanical Ventilation: General Considerations
4 Prone Position
5 Recruitment Maneuvers
6 Rescue Maneuvers
7 Sedation and Neuromuscular Blockade (NMB)
8 Conclusions
References
Prone Position During Mechanical Ventilation
1 Introduction
2 Pathophysiological Implications of the Prone Position in IMV and ARDS
3 The Evidence for the Prone Position in ARDS and IMV
4 Adverse Events Related to the Prone Position in IMV
5 When to Return to the Supine Position?
6 Conclusion
References
One Ventilator, Multiple Patients
1 Description of the Problem
2 Literature Review
3 Conclusions and Recommendations
References
Ventilator-Associated Pneumonia
1 Introduction
2 The Impact of Ventilator-Associated Pneumonia
3 Epidemiology
3.1 Risk Factors for VAP
4 Etiology
5 Risk Factors for Multidrug-Resistant Organisms
6 Clinical and Microbiological Diagnosis
7 Rapid Diagnostic Tests for Early Targeting of Treatments
8 The Importance of Delivering an Appropriate Empirical Antibiotic Treatment
9 How Do I Choose the Best Empirical and Targeted Treatment for My Patient?
9.1 Suitable Antibiotics with Coverage Against Gram-Negative Organisms
9.2 Suitable Antibiotics with Coverage Against MRSA
10 How Do I Support my Decision to Extend, Withhold, or De-Escalate Treatment?
11 Prognosis
12 Prevention of VAP: The “Pneumonia Zero” Program
13 Conclusions
References
Mechanical Ventilation in Pregnant Woman
1 Introduction
2 Physiological Changes
3 Causes
4 Oxygenation and Ventilation Goal in Pregnancy
5 Noninvasive Positive-Pressure Ventilation (NIPPV)
6 Fetus
References
Weaning and Liberation from Mechanical Ventilation
1 Weaning Parameters
2 Weaning Predictors
2.1 Rapid Shallow Breathing Index (RSBI) Test.
2.2 Cuff Leak Test
3 Daily Awakening Trials (DATs)
4 Spontaneous Breathing Trial (SBT)
4.1 Eligibility Criteria for SBT
4.2 Criteria for a Failed SBT
5 Conclusion
References
Mechanical Ventilation in Septic Shock
1 Introduction
1.1 Sepsis-Associated Lung Injury
2 Mechanical Ventilation Consideration
2.1 Low Tidal Volume
2.2 PEEP
2.3 Lung-Protective Ventilation in Sepsis Without Lung Injury
2.4 Open the Lung and Maneuvers of Recruitment
3 Final Points
References
Monitoring of Mechanical Ventilation
1 Introduction
2 Gas Exchange
2.1 Pulse Oximetry and Transcutaneous Carbon Dioxide Monitoring (Fig. 1)
3 Volumetric Capnography and Dead Space Calculation
3.1 Blood Gases
4 Alveolar-Arterial Oxygen Partial Pressure (P(A-a) O2)
5 Arterial Oxygen Content (CaO2)
6 Respiratory Mechanics
6.1 Compliance and Resistance (Figs. 4 and 5)
7 Pressure-Volume Curves
8 Diaphragmatic Function
8.1 Pressure and Flow Monitoring to Assess Asynchrony
9 Occlusion Pressure (P0.1)
10 Pressure-Time Product
11 Driving Pressure
11.1 Baby Lung Concept [26]
12 Lung Imaging
12.1 Chest X-Ray
12.1.1 Atelectasis
The X-Ray of Atelectasis Manifests as Direct X-Ray Signs and Indirect X-Ray Signs
12.1.2 Pneumonia
Pneumothorax
Pleural Fluid
13 Diaphragm Ultrasound
14 What Is Measured in Diaphragm Ultrasound
15 Use of Diaphragmatic Ultrasound in Mechanically Ventilated Patients
15.1 Weaning
16 Lung Ultrasound (LUS)
17 Ventilation Score
18 Monitoring Lung Recruitment
19 Prone Position
20 Weaning
21 Airway Cuff Pressure
22 In Summary
23 Near-Infrared Spectroscopy
24 Esophageal Pressure
25 Electrical Activity of the Diaphragm
26 Extravascular Lung Water
References
Role of Point-of-Care Ultrasound in the Management of Mechanical Ventilation
1 Lung Ultrasound (LUS)
1.1 Equipment and Examination
1.2 Normal Lung Ultrasound Pattern
2 Diaphragmatic Ultrasound
3 POCUS-Guided Mechanical Ventilation
3.1 Respiratory Complications in Mechanically Ventilated Patients
3.1.1 Pneumothorax
3.1.2 Pleural Effusion
3.1.3 Lung Consolidation/Collapse
3.1.4 Alveolar-Interstitial Lung Syndrome
3.2 Heart-Lung Interaction
3.3 Ultrasound Assessment of Lung Aeration
3.4 Lung Recruitment
3.5 Weaning from Mechanical Ventilation
3.5.1 Weaning Failure of Cardiovascular Origin
3.5.2 Weaning Failure of Diaphragmatic Origin
3.5.3 Weaning Failure of Lung Origin
3.6 LUS in COVID-19
References
Mechanical Ventilation in ARDS
1 ARDS
2 Risk Factors for ARDS
3 Noninvasive Modalities for Oxygenation and Ventilation
4 Lung-Protective Ventilation
4.1 Low Tidal Volume Ventilation
4.2 Alternative Targets for Lung-Protective Ventilation
5 Open-Lung Ventilation
5.1 Optimal PEEP
5.2 Recruitment Maneuvers
6 COVID-19 Pandemic
7 Modes of Ventilation
7.1 Volume- Versus Pressure-Limited Mechanical Ventilation
7.2 Spontaneous Ventilation
8 Advanced Techniques and Rescue Therapies
8.1 Airway Pressure Release Ventilation, Biphasic Ventilation, and Inverse Ratio
8.2 High-Frequency Oscillatory Ventilation (HFOV)
9 Non-ventilator Treatment Strategies in ARDS
9.1 Prone Positioning
9.2 Neuromuscular Blockade
9.3 Fluid Management
9.4 Inhaled Vasodilators
9.5 Extracorporeal Membrane Oxygenation
10 Liberation from Ventilator
11 Conclusion
References
Patient-Ventilator Dyssynchrony
1 Introduction
1.1 What Is Patient-Ventilator Dyssynchrony?
1.2 Why Should we Care about Patient-Ventilator Dyssynchrony?
2 Classification of Patient-Ventilator Dyssynchrony
3 Dyssynchrony by Respiratory Phases
3.1 Dyssynchrony of the Trigger Phase
3.1.1 Delayed Triggering and Ineffective Efforts
3.1.2 Auto-Triggering
3.2 Dyssynchrony of the Flow Phase
3.3 Dyssynchrony of the Cycling Phase
3.3.1 Premature Cycling Off
3.3.2 Delayed Cycling Off
3.4 Reverse Triggering
4 Consequences of Dyssynchrony
5 How to Improve Synchrony
5.1 Trigger Synchrony
5.2 Flow Synchrony
5.3 Cycling Synchrony
6 Newer Ventilator Modes and Patient-Ventilator Synchrony
6.1 Neurally Adjusted Ventilatory Assist (NAVA)
6.2 Proportional Assist Ventilation (PAV)
7 Conclusions
References
Unilateral Lung Diseases and Differential Lung Ventilation
1 Introduction
2 Pathophysiology of Unilateral Lung Diseases
2.1 Unilateral Lung Diseases with Decreased Compliance of the Involved Lung
2.2 Unilateral Lung Diseases with Increased Compliance of the Involved Lung
3 Independent Lung Ventilation
4 Classification
4.1 Synchronous
4.2 Asynchronous
5 Ventilator Strategy
5.1 PEEP
5.2 Tidal Volume
5.3 Fraction of Inspired Oxygen (FiO2)
5.4 Mode of Ventilation
6 Techniques for Lung Separation
6.1 Endobronchial Blockers
6.2 Univent Tube
6.3 Double-Lumen Tubes
6.3.1 Design
Carlens Tube
Robertshaw Tube
Polyvinyl Chloride Tubes (PVC)
6.3.2 Size Selection
6.3.3 Placement Techniques
6.3.4 Confirming Position
6.3.5 Confirming Functional Separation
6.3.6 Monitoring DLT Placement
6.3.7 Complications
7 Classification of Lung Separation
7.1 Anatomic Separation
7.1.1 Massive Hemoptysis
7.1.2 Pulmonary Alveolar Proteinosis
7.1.3 Interbronchial Aspiration
7.2 Physiologic
7.2.1 Asymmetrical Parenchymal Lung Diseases
7.2.2 Single-Lung Transplant
7.2.3 Bronchopleural Fistula
7.2.4 Unilateral Airway Obstruction
8 Weaning of ILV
9 Complications
10 Conclusion
References
Mechanical Ventilation in Obstructive Lung Disease
1 Chronic Obstructive Pulmonary Disease (COPD)
1.1 Objective of Ventilator Management
1.2 Mode of Ventilation and Initial Setting
1.3 Ventilator Alarm in Ventilated COPD Patients
1.4 High-Pressure Alarm in Ventilated COPD Patients
1.5 Low-Pressure Alarm in Ventilated COPD Patients
1.6 Liberation from Mechanical Ventilation
1.7 Postextubation Management
2 Status Asthmaticus
2.1 Objective of Ventilator Management
2.2 Mode of Ventilation and Initial Setting
2.3 Ventilator Alarm in Ventilated Status Asthmaticus
2.4 High-Pressure Alarm in Ventilated Status Asthmaticus
2.5 Liberation from Mechanical Ventilation
2.6 Postextubation Management
2.7 Summary
References
Mechanical Ventilation Strategies for Patients on Extracorporeal Membrane Oxygenation Support
1 Introduction
2 Ventilator Management Prior to ECMO Initiation
3 Ventilator Management on ECMO
3.1 Historical Management, Observational Studies
3.2 Lung-Protective Ventilation Remains the Standard
3.3 Ultraprotective Lung Ventilation, Promise Unrealized
3.4 Driving Pressure (ΔP), Mechanical Power
3.5 Future Directions in Mechanical Ventilation
3.6 Awake ECMO/Early Extubation
3.7 Ventilation Strategy During Lung Recovery and ECMO Weaning
4 Summary and Recommendations
References
Mechanical Ventilation in Neurocritical Care Patient
1 Introduction
2 Airway Management of a Patient with Intracranial Pathology
2.1 Protecting the Airway Indications
2.2 Planning Intubation and Difficult Airway Anticipation
2.3 Preparing for Intubation Induction in a Patient with Acute Brain Injury
3 Mechanical Ventilation
3.1 Is There a Right Setting for Neurocritical Care Patients?
3.2 Positive End-Expiratory Pressure and Intracranial Pressure
3.3 Rescue Therapies for Patients with Severe Respiratory Failure and Acute Brain Injury
4 Carbon Dioxide Levels and the Brain: Effect of Hypercarbia and Hypocarbia
5 Oxygen Levels: Impact of Hypoxia and Hyperoxia on Acute Brain Injury Patients
6 Liberation from Mechanical Ventilation
7 Tracheostomy
8 Special Scenarios
8.1 Acute Respiratory Distress Syndrome in Patients with Brain Injury
8.2 Neurogenic Pulmonary Edema
8.3 Pneumocephalus
References
Common Troubleshooting in Daily Practice
1 High Airway Pressure Alarm
1.1 Causes of High Airway Pressure [4, 5]
1.2 Initial Assessment and Management
1.2.1 Step One: Start Manual Bag-Mask Ventilation
1.2.2 Step Two: Assess for Life-Threatening Major Airway Obstruction
1.2.3 Step Three: Perform Inspiratory Pause Hold
1.2.4 Step Four: Urgent Cause Management
2 Low Exhaled Tidal Volume (VT)/Minute Ventilation Alarm
2.1 Causes of Low Exhaled Tidal Volume [4–6, 8]
2.2 Initial Assessment and Management
2.2.1 Step One: Start Manual Bag-Mask Ventilation
2.2.2 Step Two: Check Endotracheal Tube Position
2.2.3 Step Three: Check for Cuff Leak
2.2.4 Step Four: Assess the Patient
3 Low-Pressure Alarm
4 High-Frequency Alarm
4.1 Common Causes of High-Frequency Alarm [19]
4.2 Management
5 Low-Frequency and Apnea Alarms
5.1 Common Causes of Low-Frequency Alarm
5.2 Common Causes of Apnea Alarm
6 High Positive End-Expiratory Pressure (PEEP) Alarm
7 Low Positive End-Expiratory Pressure (PEEP) Alarm
8 Desaturation and Hypoxia
8.1 Causes of Desaturation and Hypoxia on Mechanical Ventilation [6, 20–22]
8.2 Initial Assessment and Management
8.2.1 Step One: Check the Pulse Oximeter and Set the Fraction of Inspired Oxygen to 1
8.2.2 Step Two: Check Chest Movement: “Is the Patient Ventilating?”
8.2.3 Step Three: Start Manual Bag-Mask Ventilation
8.2.4 Step Four: Urgent Cause Management
9 Hypotension
9.1 Common Causes of Hypotension Occurring Immediately after the Initiation of Positive-Pressure Ventilation [1, 3]
9.2 Initial Assessment and Management
9.2.1 Step One: Fluid Administration
9.2.2 Step Two: Temporarily Disconnect the Patient from the Ventilator
9.2.3 Step Three: Vasopressor Infusion
9.2.4 Step Four: Assess for Tension Pneumothorax
References
Index