This is an agenda-setting and high-profile book that presents an authoritative and cutting-edge analysis of nanoscience and technology. The Oxford Handbook of Nanoscience and Technology provides a comprehensive and accessible overview of the major achievements in different aspects of this field. The Handbook comprises 3 volumes, structured thematically, with 25 chapters each. Volume I presents fundamental issues of basic physics, chemistry, biochemistry, tribology etc. of nanomaterials. Volume II focuses on the progress made with host of nanomaterials including DNA and protein based nanostructures. Volume III highlights engineering and related developments, with a focus on frontal application areas. All chapters are written by noted international experts in the field. The book should be useful for final year undergraduates specializing in the field. It should prove indispensable to graduate students, and serious researchers from academic and industrial sectors working in the field of Nanoscience and Technology from different disciplines including Physics, Chemistry, Biochemistry, Biotechnology, Medicine, Materials Science, Metallurgy, Ceramics, Information Technology as well as Electrical, Electronic and Computational Engineering.
Author(s): Narlikar A., Fu Y. (eds.)
Series: Oxford Handbooks
Publisher: OUP
Year: 2010
Language: English
Pages: 931
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Справочники, каталоги, таблицы
Contents......Page 10
List of Contributors......Page 17
1.1 Introduction......Page 22
1.2 Present Si technology trend stimulated by scientific knowledge......Page 23
1.3 Key knowledge for Si nanodevices obtained by computational science......Page 24
1.4 Future Si technology trend predicted by computational science......Page 60
References......Page 64
2.1 Introduction and motivations......Page 68
2.2 Two electrons in double quantum dots......Page 71
2.3 Two electrons in quantum wire quantum dots......Page 93
2.4 Few electrons in triple quantum dots......Page 97
2.5 Conclusion......Page 102
Acknowledgments......Page 103
References......Page 106
3.1 Introduction......Page 111
3.2 Spin diffusion......Page 117
3.3 Models for spin-polarized currents acting on magnetization......Page 122
3.4 Current-induced magnetization switching......Page 129
3.5 Current-driven magnetic excitations......Page 135
3.6 Resonant-current excitation......Page 139
3.7 Conclusion......Page 144
References......Page 145
4.1 Introduction......Page 157
4.2 Overview of molecular nanomagnets......Page 160
4.3 Giant spin model for nanomagnets......Page 162
4.4 Quantum dynamics of a dimer of nanomagnets......Page 173
4.5 Resonant photon absorption in Cr[sub(7)]Ni antiferromagnetic rings......Page 176
4.6 Photon-assisted tunnelling in single-molecule magnet......Page 181
4.7 Environmental decoherence effects in nanomagnets......Page 182
4.8 Molecular spintronics using single-molecule magnets......Page 187
4.9 Conclusion......Page 194
References......Page 195
5.2 Growth of silicon-germanium alloys......Page 202
5.3 Strain......Page 204
5.4 Band structure......Page 207
5.5 Mainstream nanoelectronic applications......Page 210
5.6 Resonant tunnelling diodes......Page 215
5.7 SiGe quantum cascade emitters......Page 218
References......Page 223
6.1 Introduction......Page 226
6.2 Methods of epitaxial growth......Page 231
6.3 Self-organization in Stranski–Krastanov systems......Page 233
6.4 Site control of quantum dots on patterned substrates......Page 241
6.5 Nanophotonics with quantum dots......Page 248
6.6 Arrays of quantum dots......Page 255
6.7 Summary and outlook......Page 257
References......Page 259
7.1 Introduction......Page 265
7.2 Infrared photon absorption......Page 268
7.3 Some metrics for photon detectors......Page 275
7.4 Experimenal single-pixel quantum-dot infrared photodetectors......Page 281
7.5 Device characteristics......Page 291
7.6 Toward quantum-dot focal plane array imagers......Page 303
7.7 Challenges and prospects for high-performance detectors and arrays......Page 309
References......Page 311
8.1 Introduction......Page 315
8.2 Materials......Page 316
8.3 Solid electrochemical reaction......Page 317
8.4 Fundamentals of an atomic switch......Page 320
8.5 New types of atomic switches......Page 322
8.6 Applications of atomic switches......Page 327
8.7 Summary and conclusion......Page 330
References......Page 331
9.1 Introduction......Page 333
9.2 Nanofabrication for molecular devices......Page 334
9.3 Molecular tunnelling barrier......Page 340
9.4 Molecular semiconducting wire......Page 342
9.5 Molecular rectifying diode......Page 344
9.6 Molecular switches and memories......Page 347
9.7 Molecular transistor......Page 351
9.8 Conclusion......Page 352
References......Page 353
10.2 Direct patterning of nanostructures......Page 364
10.3 Directed assembly of nanostructures......Page 378
10.4 Characteristics of self-assembled hybrid nanodevices......Page 390
References......Page 401
11.1 Introduction......Page 407
11.2 Synthesis of carbon nanotubes and carbon nano-test-tubes......Page 408
11.3 Controlled filling of magnetic materials into carbon nano-test-tubes......Page 413
11.4 Synthesis of water-dispersible and magnetically responsive carbon nano-test-tubes......Page 418
11.5 Carbon nanotube cavities as a reaction field of hydrothermal synthesis......Page 424
11.6 Conclusions......Page 433
References......Page 434
12.1 Introduction......Page 437
12.2 Surface characterization......Page 440
12.3 Single-crystal surfaces......Page 448
12.4 Changing the reactivity at the atomic scale: Design of new catalysts from first principles......Page 454
12.5 Nanoparticles......Page 458
12.6 TEM studies of nanoclusters on high surface area supports......Page 479
12.7 Conclusions and outlook......Page 485
References......Page 486
13.1 Introduction......Page 495
13.2 Thermal ablative therapy in cancer......Page 496
13.3 Nanomaterial applications......Page 502
13.4 Gold nanoshells and nanorods......Page 513
13.6 Conclusions and future directions......Page 517
References......Page 518
14.1 Introduction......Page 524
14.2 Current problems with use of nanoparticles in medicine......Page 534
14.3 Nanoparticle–cell interactions......Page 540
14.4 Nanoparticles as imaging tools in animals and humans......Page 546
Acknowledgments......Page 551
References......Page 552
15.1 Introduction......Page 560
15.2 Background......Page 563
15.3 Theoretical modelling: NanoLAMPs......Page 569
15.4 Design......Page 585
15.5 Conclusion......Page 587
References......Page 588
16.1 Introduction......Page 591
16.2 Protein fundamentals......Page 593
16.3 Nanofabrication......Page 595
16.4 Nanoelectronic devices based on proteins......Page 601
16.5 Biophysical implications of protein-based nanobioelectronics......Page 609
16.6 Nanodevices for biosensing......Page 612
16.7 Conclusions......Page 626
References......Page 627
17.1 Introduction......Page 633
17.2 Photophysical properties of quantum dots......Page 636
17.3 Engineering of QD-based probes for biomedical applications......Page 642
17.4 Tumor molecular imaging and profiling......Page 650
Acknowledgments......Page 657
References......Page 658
18.1 Introduction......Page 662
18.2 Theoretical insights......Page 663
18.3 Substrate effect (prism coupler, Ge-doped Si waveguide, grating, plasmonic)......Page 670
18.4 Metallic effect (LRSPR, CMO adhesive layer)......Page 678
18.5 Microfluidic parts......Page 680
18.6 Biomolecular layer effect......Page 682
18.7 Conclusions......Page 690
References......Page 691
19.1 Introduction......Page 694
19.2 Electron field emission from carbon nanotubes......Page 695
19.3 Carbon-nanotube field emission electron and X-ray technologies in biomedical applications......Page 698
19.4 Summary and conclusion......Page 715
References......Page 717
20.1 Introduction......Page 720
20.2 Basic considerations......Page 722
20.3 Hydrogen–material interaction......Page 726
20.4 Internal interaction in HSMs......Page 735
20.5 Structures of hydrogen sorbents......Page 743
20.6 Required hydrogen-storage properties and design principles (DP)......Page 746
20.7 Summary......Page 752
References......Page 753
21.1 Introduction......Page 757
21.2 Driving forces for the evolution of cold cathodes......Page 758
21.3 Single-atom emitters......Page 760
21.4 Use of single-atom nanotip: The Fresnel projection microscope......Page 763
21.5 Use of single-atom nanotip: The microgun......Page 767
21.6 Material issues for field emitters: Carbon nanocompounds......Page 769
21.7 Carbon-nanotube field emitters......Page 770
21.8 Carbon-nanopearl field emitters......Page 782
21.9 Applications and uses of carbon nanocompounds, CNTs and CNPs, as cold cathodes......Page 786
21.10 Conclusions......Page 790
References......Page 806
22.1 Introduction......Page 810
22.2 Fabrication of photoelectrodes with 2D grid-like nanostructures by the biotemplating approach......Page 812
22.3 Assembly and photophysics of grid-like nanostructures into 3D open architectures for the photocatalytic electrodes......Page 815
22.4 Performance of DSSCs working with dye-sensitized TiO[sub(2)] stacked-grid array photoelectrodes......Page 820
22.5 Characteristics and performance of DSSCs working with TiO[sub(2)]/NiO composite photoactive electrodes......Page 823
22.6 Summary......Page 826
References......Page 827
23.1 Introduction......Page 829
23.2 Self- and directed patterning......Page 835
23.3 Patterning via external tools......Page 839
23.4 Directed self-masking via selective deposition on chemical patterns......Page 852
23.5 Molecular rulers: A hybrid nanolithographic patterning method......Page 863
References......Page 869
24.2 Pulsed laser ablation for nanomaterials synthesis......Page 881
24.3 Laser as a heat source for device nanoprocessing......Page 886
24.4 Laser surface nanopatterning with near-field and light-enhancement effects......Page 889
24.5 Large-area parallel laser nanopatterning......Page 900
24.6 Conclusions......Page 905
References......Page 906
25.1 Introduction......Page 908
25.2 Nanomaterials in consumer products......Page 909
25.3 Characterization of nanomaterials......Page 911
25.4 Hazard evaluation......Page 912
25.5 Pulmonary exposure assessment......Page 914
25.6 Dermal exposure assessment......Page 915
25.7 Evaluating the risks associated with exposure to nanomaterials......Page 917
25.8 Research priorities for the development of more refined estimates of nanomaterial risk......Page 920
25.9 Conclusion......Page 923
References......Page 924
C......Page 926
I......Page 927
N......Page 928
S......Page 929
T......Page 930
Z......Page 931