Organic Solar Cells: Energetic and Nanostructural Design

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book focuses on the essential scientific ideas and breakthroughs in the last three decades for organic solar cells that have realized practical applications. The motivation for publishing this book is to explain how those essential ideas have arisen and to provide a foundation for future progress by target readers―students, novices in the field, and scientists with expertise. The main topics covered in the book include the fundamental principles and history of organic solar cells, blended junction, nanostructure control, photocurrent generation, photovoltage generation, doping, practical organic solar cells, and possible ideas for the future. The editors enthusiastically anticipate the vigorous development of the field of organic solar cells by young scientists of the next generation.

Author(s): Masahiro Hiramoto, Seiichiro Izawa
Publisher: Springer Singapore
Year: 2021

Language: English
Pages: 267
City: Singapore

Preface
Contents
1 Basic Principles of Modern Organic Solar Cells
1.1 Background
1.1.1 Current Status of Solar Cells: c-Si
1.1.2 Chasers of c-Si
1.1.3 Motivation for Organic Solar Cell
1.1.4 History
1.2 Principles
1.2.1 Photocurrent
1.2.2 Photovoltage
1.2.3 Cell Design
1.3 Conclusions
References
2 A Path to the Blended Junction
2.1 Shock of Two-Layer Solar Cell
2.1.1 Motivation
2.2 Tracking During Interface Making
2.2.1 Expectation
2.2.2 Tracking
2.2.3 Key: Direct PTC/Pc Molecular Contact
2.3 Blended Junction
2.3.1 Expectation
2.3.2 Overcoming Experimental Hurdles
2.3.3 Three-Layer Cell
2.3.4 p-i-n Junction
2.3.5 Inorganic/Organic Hybrid p-i-n Junction
2.3.6 Inevitably Conceived Issue: Percolation
2.3.7 Carrier Generation Model
2.4 Conclusion
References
3 Percolation Toward Lateral Junctions
3.1 Motivation
3.2 Percolation
3.2.1 Substrate Temperature Control
3.2.2 Crystalline–Amorphous Nanocomposite
3.2.3 p-i-n Cells
3.3 Vertical Junctions
3.3.1 Concept
3.3.2 Cell Fabrication
3.3.3 Layer Width
3.3.4 Exciton Diffusion Length
3.4 Lateral Junctions
3.4.1 Lateral Electron Transport in Organic Single Crystals
3.4.2 Lateral Junctions
3.4.3 Carrier Pathway Unit Cells
3.4.4 Carrier Ranges
3.4.5 Lateral Alternating Multilayered Junction
3.5 Conclusion
References
4 OPV with a Crystalline Organic Pigment Active Layer Up to 10 μm
4.1 Introduction: Optical Design of Thickness of OPV and Its Photoelectric Conversion Layer
4.2 Change in Relation Between Film Thickness of Active Layer and Solar Cell Characteristics of OPV by Crystallization
4.2.1 Fabrication of Pigmented OPV Device with Crystallized Active Layer
4.2.2 Relationship Between Active Layer Thickness and Solar Cell Characteristics
4.2.3 Film Morphology and Crystallinity of 10-µm Crystallized OPV
4.2.4 Relationship Between Active Layer Thickness and Absorption/Solar Cell Characteristics
4.3 Effect of Buffer Layer and Antireflection Film
4.3.1 Buffer Layer Selection for Stable Comparison
4.3.2 Effect of Antireflection Film
4.4 Summary and Outlook
References
5 Polymer Solar Cells: Development of π-Conjugated Polymers with Controlled Energetics and Structural Orders
5.1 Introduction
5.2 Thiazolothiazole-Based Polymers
5.2.1 Crystallinity of Thiophene–Thiazolothiazole Donor–Acceptor Polymers
5.2.2 Control of Backbone Orientation in Thiophene–Thiazolothiazole Polymers
5.2.3 Impact of Side Chain Topology in Solar Cell Performance
5.2.4 Impact of Backbone Orientation in Solar Cell Performance
5.2.5 Distribution of Backbone Orientation Through Film Thickness
5.2.6 Correlation Between Thickness Dependence in FF and Backbone Orientation
5.2.7 Summary
5.3 Naphthobischalcogenadiazole-Based Polymers
5.3.1 Naphthobischalcogenadiazoles
5.3.2 Quaterthiophene–Naphthobisthiadiazole Polymer (PNTz4T): Comparison with Benzothiadiazole Analog
5.3.3 Molecular Design of Polymers Using NTz and NOz Toward Reduction of Photon Energy Loss
5.3.4 Summary
5.4 Conclusion and Outlook
References
6 Charge Carrier Dynamics in Polymer Solar Cells
6.1 Introduction
6.2 Photovoltaic Conversion in Polymer Solar Cells
6.3 Optoelectronic Measurements
6.3.1 Transient Absorption Spectroscopy
6.3.2 Transient Photovoltage and Photocurrent Measurements
6.4 Charge Generation Dynamics
6.4.1 Amorphous Polymer Solar Cells
6.4.2 Crystalline Polymer Solar Cells
6.4.3 Polymer Solar Cells with Small Photon Energy Loss
6.4.4 Ternary Blend Polymer Solar Cells
6.5 Charge Recombination Dynamics
6.5.1 Bimolecular Recombination Dynamics
6.5.2 Charge Carrier Lifetime
6.6 Challenging Issues and Concluding Remarks
References
7 First-Principles Investigations of Electronically Excited States in Organic Semiconductors
7.1 Introduction
7.2 Effects of Molecular Aggregation on Electronic States: Polarization and Delocalization
7.2.1 Ionization Potential and Electron Affinity from the Gas to Solid Phase
7.2.2 Polarization Energies of Excited States
7.2.3 Excited States in Molecular Aggregates
7.3 Electronic Structure Calculations for Optoelectronic Properties
7.3.1 Many-Body Green’s Function Method Within GW Approximation
7.3.2 Benchmark Results for Exciton Binding Energy
7.3.3 Fragment Molecular Orbital Method
7.4 Pentacene Clusters
7.4.1 Polarization Energies of Charged and Excited States
7.4.2 Delocalized Electronic States
7.5 Pentacene/C60 Planar Heterojunction
7.6 Concluding Remarks
References
8 Open-Circuit Voltage in Organic Solar Cells
8.1 Introduction
8.2 Theoretical Background of Open-Circuit Voltage in Organic Solar Cells
8.2.1 Photoconversion Mechanisms in Organic Solar Cells
8.2.2 Empirical Understanding of Open-Circuit Voltage in Organic Solar Cells
8.2.3 Equivalent Circuit Model
8.2.4 Detailed Balance Theory
8.3 Increasing Open-Circuit Voltage in Organic Solar Cells by Modifying Donor/Acceptor Interface
8.3.1 Effect of Energy-Level Alignment at Donor/Acceptor Interface on Open-Circuit Voltage in Organic Solar Cells
8.3.2 Doping for Controlling Open-Circuit Voltage in Organic Solar Cells
8.3.3 Organic pn Homojunction Solar Cells
8.3.4 Enhancement of Open-Circuit Voltage in Organic Solar Cells by Monolayer Cascade Energy Structure at Donor/Acceptor Interface
8.3.5 Importance of Donor/Acceptor Interfacial Crystallinity to Reduce Open-Circuit Voltage Loss in Organic Solar Cells
8.3.6 Controlling Energy Level of Acceptor Dye Molecule to Reduce Open-Circuit Voltage Loss in Organic Solar Cells
8.4 Conclusion and Future Prospects
References
9 Parts-Per-Million-Level Doping Effects and Organic Solar Cells Having Doping-Based Junctions
9.1 Introduction
9.1.1 Motivation
9.1.2 History
9.2 Principles
9.2.1 Charge Transfer
9.2.2 Ionization
9.3 ppm-Level Doping Method
9.3.1 Purification
9.3.2 Ultra-Slow Deposition at 10–9 nm s−1
9.4 pn-Control by Doping
9.4.1 Single Films
9.4.2 Blended Films
9.5 Doping Efficiency
9.5.1 Band-Mapping
9.5.2 Low Doping Efficiency in Single Films
9.6 Junction Formation
9.6.1 Ohmic Junctions
9.6.2 Homojunctions
9.6.3 Band-Mapping of Organic pn-Homojunctions
9.7 Doping Sensitization in Blended Films
9.8 ppm-Level Doping Effects
9.8.1 Organic Semiconductor Films
9.9 Bulk-Doped Organic Single Crystals
9.9.1 Doped Homoepitaxy
9.9.2 Hall Effects
9.9.3 High Ionization Rate
9.9.4 Scattering
9.9.5 Doping-Induced Trap Formation
9.9.6 Future Prospects
9.9.7 Conclusion
References
10 Proposal for Future Organic Solar Cells
10.1 Is Blended Junction Necessary?
10.1.1 Bipolar Band-Conductive Organic Semiconductor-Exciton Dissociation Using Single Organic Semiconductor
10.1.2 Long Exciton Diffusion Length—Doped Organic Single-Crystal Solar Cell
10.1.3 Large Dielectric Constant—Organic/Inorganic Hybrid Cell
10.2 Advanced Lateral Junctions—Beyond Shockley–Queisser Limit
10.3 Recombination Suppression
10.3.1 Non-radiative Recombination Dissipated to Molecular Vibration
10.3.2 Non-radiative Recombination Via Carrier Traps
10.4 Conclusion
References