Ordinary Differential Equations

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Kenneth B. Howell
Series: 1
Publisher: CRC Press
Year: 2012

Language: English
Pages: 864

Front Cover......Page 1
Table of Contents......Page 6
Preface (with Important Information for the Reader)......Page 14
Part I: The Basics......Page 16
Chapter 1: The Starting Point: Basic Concepts and Terminology......Page 18
Chapter 2: Integration and Differential Equations......Page 36
Part II: First-Order Equations......Page 52
Chapter 3: Some Basics about First-Order Equations......Page 54
Chapter 4: Separable First-Order Equations......Page 82
Chapter 5: Linear First-Order Equations......Page 110
Chapter 6: Simplifying Through Substitution......Page 122
Chapter 7: The Exact Form and General Integrating Factors......Page 134
Chapter 8: Slope Fields: Graphing Solutions Without the Solutions......Page 160
Chapter 9: Euler's Numerical Method......Page 192
Chapter 10: The Art and Science of Modeling with First-Order Equations......Page 212
Part III: Second- and Higher-Order Equations......Page 240
Chapter 11: Higher-Order Equations: Extending First-Order Concepts......Page 242
Chapter 12: Higher-Order Linear Equations and the Reduction of Order Method......Page 260
Chapter 13: General Solutions to Homogeneous Linear Differential Equations......Page 276
Chapter 14: Verifying the Big Theorems and an Introduction to Differential Operators......Page 296
Chapter 15: Second-Order Homogeneous Linear Equations with Constant Coefficients......Page 314
Chapter 16: Springs: Part I......Page 334
Chapter 17: Arbitrary Homogeneous Linear Equations with Constant Coefficients......Page 350
Chapter 18: Euler Equations......Page 370
Chapter 19: Nonhomogeneous Equations in General......Page 384
Chapter 20: Method of Undetermined Coefficients (aka: Method of Educated Guess)......Page 396
Chapter 21: Springs: Part II......Page 416
Chapter 22: Variation of Parameters (A Better Reduction of Order Method)......Page 432
Part IV: The Laplace Transform......Page 448
Chapter 23: The Laplace Transform (Intro)......Page 450
Chapter 24: Differentiation and the Laplace Transform......Page 480
Chapter 25: The Inverse Laplace Transform......Page 498
Chapter 26: Convolution......Page 510
Chapter 27: Piecewise-Defined Functions and Periodic Functions......Page 524
Chapter 28: Delta Functions......Page 556
Part V: Power Series and Modified Power Series Solutions......Page 574
Chapter 29: Series Solutions: Preliminaries......Page 576
Chapter 30: Power Series Solutions I: Basic Computational Methods......Page 602
Chapter 31: Power Series Solutions II: Generalizations and Theory......Page 646
Chapter 32: Modified Power Series Solutions and the Basic Method of Frobenius......Page 682
Chapter 33: The Big Theorem on the Frobenius Method, with Applications......Page 720
Chapter 34: Validating the Method of Frobenius......Page 744
Part VI: Systems of Differential Equations (A Brief Introduction)......Page 764
Chapter 35: Systems of Differential Equations: A Starting Point......Page 766
Chapter 36: Critical Points, Direction Fields and Trajectories......Page 790
Appendix: Author’s Guide to Using This Text......Page 822
Answers to Selected Exercises......Page 832
Back Cover......Page 864