A one-stop resource for researchers and developers alike, this book covers a plethora of nanocomposite properties and their enhancement mechanisms. With contributors from industry as well as academia, each chapter elucidates in detail the mechanisms to achieve a certain functionality of the polymer nanocomposite, such as improved biodegradability, increased chemical resistance and tribological performance. Special emphasis is laid on the interdependence of the factors that affect the nanocomposite properties such that readers obtain the information necessary to synthesize the polymer materials according to the requirements of their respective applications.
Author(s): Vikas Mittal
Publisher: Wiley
Year: 2010
Language: English
Pages: 442
Optimization of Polymer Nanocomposite Properties......Page 1
Contents......Page 7
Preface......Page 17
List of Contributors......Page 21
1.1 Introduction......Page 25
1.2 Means of Synthesis and Microstructure......Page 27
1.3 Importance of Thermogravimetric Analysis and X-Ray Diffraction for Filler and Nanocomposite Microstructure Characterization......Page 30
1.4 Polar and Nonpolar Polymer Systems......Page 33
1.5 Advances in Filler Surface Modifications......Page 38
1.6 Prediction of Composite Properties......Page 39
References......Page 41
2.1 Introduction......Page 45
2.2 Epoxy Nanocomposite Systems......Page 46
2.3 Effects of Processing and Aging......Page 51
2.4 Other Thermoset Nanocomposite Systems......Page 54
2.5.1 Epoxy-HBP Nanostructured Systems......Page 57
2.5.2 Ternary Nanostructured Systems and Multiscale Composites......Page 58
2.5.4 Modeling Thermoset Nanocomposite Systems......Page 60
References......Page 62
3.1 Introduction......Page 65
3.2.1 Mechanism and Influencing Factors......Page 66
3.2.1.1 The Organic Modification......Page 67
3.2.2.1 Changes in the Local Microstructure of Clay Particles......Page 68
3.2.2.2 Change in the Spatial Distribution of Clay Particles......Page 69
3.3.1 Mechanism and Influencing Factors......Page 81
3.3.2 Interface Enhancement......Page 84
References......Page 89
4.1 Introduction......Page 91
4.2.1 Manufacturing Processes......Page 92
4.2.2 Dispersion (Exfoliation) State of Nanoclays......Page 93
4.2.3 Exfoliation Process of Nanoclays......Page 96
4.2.4.1 Raw Materials......Page 99
4.2.4.2 Mixing Methods......Page 102
4.2.5 Morphology of Base Polymers......Page 106
4.3.1.1 Quiescent Crystallization......Page 107
4.3.2.1 Quiescent Crystallization......Page 108
4.4 Morphology Development in Processing......Page 110
4.4.1.1 Conventional Injection Molding......Page 111
4.4.1.2 Dynamic Packing Injection Molding......Page 112
4.4.2 Sheet Extrusion......Page 113
4.5 Conclusions......Page 114
References......Page 115
5.1 Introduction......Page 117
5.2 Rheological Behavior of Polymer Nanocomposites in Solution State......Page 119
5.3 Rheological Behavior of Polymer Nanocomposites in Melt State......Page 131
5.4 Conclusions......Page 142
References......Page 143
6.1 Introduction......Page 147
6.2.1 Experimental Investigations......Page 148
6.2.2 Analytical Modeling......Page 149
6.3.1 Experimental Investigations......Page 153
6.3.2.1 Yield Stress......Page 155
6.3.2.2 Properties at Break......Page 156
6.4 Conclusions......Page 159
References......Page 160
7.1 Introduction......Page 163
7.2.2.1 Transmission Electron Microscopy (TEM)......Page 166
7.2.3.2 Dynamical Mechanical Analysis......Page 167
7.2.4.2 Essential-Work-of-Fracture Approach......Page 168
7.3.1 Amorphous Thermoplastic......Page 169
7.3.2 Semi-Crystalline Thermoplastic......Page 173
7.4.1 Amorphous Thermoplastic......Page 180
7.4.2 Semi-Crystalline Thermoplastic......Page 186
7.5 Concluding Remarks......Page 192
References......Page 193
8.1 Introduction......Page 197
8.2 Theory of Permeation......Page 198
8.3 Barrier Generation in Polar Nanocomposites......Page 200
8.4 Barrier Generation in Nonpolar Nanocomposites......Page 207
8.5 Modeling of Barrier Properties of Composites......Page 213
References......Page 216
9.1 Introduction......Page 219
9.2.1.1 Barrier Effect......Page 220
9.2.1.3 Char Forming and Catalytic Effects......Page 222
9.2.1.4 Radical Trapping and Sorption Mechanisms......Page 225
9.2.2.1 Carbon Nanotubes and Carbon Nanofibers......Page 226
9.2.3.1 Silica Oxide......Page 229
9.2.4 Metals and Metal Oxides......Page 230
9.3 Concluding Remarks......Page 231
References......Page 232
10.1 Introduction......Page 235
10.2 Nanoparticle Reinforcements......Page 237
10.2.2 Roles of Nanoparticles on Transfer Film Formation......Page 238
10.2.3 Structure–Tribological Property Relationships......Page 239
10.2.3.1 Effect of Grafting Treatment of Nanoparticles on Tribological Improvement of Epoxy Nanocomposites......Page 241
10.2.3.2 Role of Nano-SiO2 Particles on the Mechanical and Tribological Behaviors of PEEK......Page 242
10.3 Carbon Nanotubes......Page 247
10.4.1 Tribological Behavior of Traditional and Nanofillers (or Sub-Micro)-Filled Epoxy......Page 250
10.4.2 Roles of Nanoparticles on the Tribological Behavior of SCF/PTFE/Graphite-Filled PEEK......Page 251
References......Page 257
11.1 Introduction......Page 259
11.2.1 Preparation and Morphology of PBAT Nanocomposites......Page 261
11.2.2 Mechanical Properties of PBAT Nanocomposites......Page 265
11.2.3 Thermal Properties of PBAT Nanocomposites......Page 267
11.2.4 Biodegradability of PBAT Nanocomposites......Page 268
11.3.1 Preparation and Morphology of PBS Nanocomposites......Page 269
11.3.2 Mechanical Properties of PBS Nanocomposites......Page 272
11.3.3 Thermal Properties of PBS Nanocomposites......Page 276
11.3.4 Biodegradability of PBS Nanocomposites......Page 277
11.4 Conclusions......Page 280
References......Page 282
12.1 Introduction......Page 285
12.2.1 Liquid-Based Self-Healing Thermosetting Polymers......Page 288
12.2.3 Geometric Aspects in Encapsulation......Page 289
12.3.1 Modeling the Modulus of Nanoparticle-Filled Polymers......Page 294
12.3.2 Experimental Validation for Non-Self-Healing Systems......Page 297
12.3.3 Design of a Self-Healing Nanoparticle Composite......Page 298
References......Page 301
13.1 Introduction......Page 303
13.2.1 Silicates......Page 304
13.2.3 Exfoliated Graphite......Page 305
13.3 Isothermal and Nonisothermal Crystallization in Polymers......Page 306
13.3.1.1 Crystallization......Page 307
13.3.2 Poly-1-Butene (PB)......Page 309
13.3.3 Polybutylene Terephthalate (PBT)......Page 310
13.3.4 Polyethylene Terephthalate (PET)......Page 311
13.3.6.1 Crystallization......Page 312
13.3.7 Polylactic Acid (PLLA)......Page 313
13.3.9 Polyether Ether Ketone (PEEK)......Page 314
13.3.10.1 Crystallization......Page 315
13.3.10.2 Polymorphism in Nylon 6......Page 316
13.3.12 Nylon 11......Page 317
13.3.14.2 Polymorphism in PVDF......Page 318
13.3.15.1 Crystallization......Page 319
13.4 Conclusions......Page 320
References......Page 321
14.1.2.1 Dispersion of Nanoparticles......Page 325
14.1.2.3 Crystallization......Page 327
14.1.3 Property Predictions......Page 328
14.2.1.1 Rule of Mixtures......Page 329
14.2.1.3 Mori–Tanaka Model......Page 330
14.2.2 Numerical Methods......Page 331
14.2.2.1 Molecular Dynamics......Page 332
14.2.2.3 Brownian Dynamics......Page 333
14.2.2.5 Lattice Boltzmann......Page 334
14.2.2.7 Dynamic Density Functional Theory......Page 335
14.2.2.9 Boundary Element Method......Page 336
14.2.3.2 Sequential and Concurrent Approaches......Page 337
14.3 Prediction of Nanocomposite Properties......Page 338
14.3.1.1 Stiffness and Strength......Page 340
14.3.1.2 Stress Transfer......Page 344
14.3.1.3 Mechanical Reinforcement......Page 345
14.3.1.5 Viscoelasticity......Page 347
14.3.2.1 Buckling......Page 348
14.3.2.3 Fracture......Page 349
14.3.2.4 Wear......Page 350
14.4 Conclusions......Page 351
Acknowledgments......Page 352
References......Page 353
15.1 Introduction......Page 357
15.2.1 General Structure......Page 358
15.2.2 Various Types of Layered Silicates......Page 359
15.3.1 Relationship Between Morphology and Properties......Page 362
15.3.2 Properties of Conventional Layered Silicate/Polymer Nanocomposites......Page 363
15.4.1 Exfoliation of High Crystallinity Nonexpandable Mica......Page 368
15.4.2 Controlling the Number of Nanolayers (in the Dispersed Platelets): Interstratified Layered Silicate/Polymer Nanocomposites......Page 371
15.5 Summary......Page 372
References......Page 373
16.1 Introduction......Page 375
16.2 Thermomechanical Analysis......Page 376
16.3 Dynamic Mechanical Analysis and the Principle of Time-Temperature Superposition......Page 378
16.4 Nanoclays and Their Influence on the Thermomechanical Properties of Polymer Composites: Some Case Studies......Page 379
16.5 Conclusions......Page 390
References......Page 391
17.1 Introduction......Page 393
17.2.1.1 Effects of Temperature, Shear, and Residence Time......Page 394
17.2.1.2 Effects of Extruder Configuration and Screw Profiles......Page 398
17.2.1.3 Effect of Processing Route......Page 401
17.2.2 Melt-Intercalation of Polymer/CNT Systems......Page 402
17.3 Solution-Intercalation of Polymer Nanocomposites......Page 404
17.4.1 Water Injection-Assisted Melt-Compounding......Page 409
17.4.2 Supercritical CO2-Assisted Melt-Compounding......Page 412
17.4.3 Ultrasound-Assisted Melt-Compounding......Page 415
17.5 Processing of Thermoset Nanocomposites......Page 418
17.6 Conclusions......Page 423
References......Page 424
Index......Page 431