A typical optical system is composed of three basic components: a source, a detector, and a medium in which the optical energy propagates. Many textbooks cover sources and detectors, but very few cover propagation in a comprehensive way, incorporating the latest progress in theory and experiment concerning the propagating medium. This book fulfills that need. It is the first comprehensive and self-contained book on this topic. It is useful reference book for researchers, and a textbook for courses like Laser Light Propagation, Solid State Optics, and Optical Propagation in the Atmosphere.
Author(s): Michael E. Thomas
Year: 2006
Language: English
Pages: 584
Contents......Page 13
PART I: BACKGROUND THEORY AND MEASUREMENT......Page 21
1.1 Introduction......Page 23
1.2 Macroscopic Properties in Vacuum......Page 27
1.3 Optical Propagation in Vacuum......Page 36
Problems......Page 40
Notes......Page 41
Bibliography......Page 43
2.1 Macroscopic Properties in Matter......Page 45
2.2 Optical Propagation in Matter......Page 90
2.3 Microscopic Properties in Matter......Page 91
Problems......Page 94
Bibliography......Page 96
3.1 Quantum Mechanics I......Page 97
3.2 Introduction to Spectroscopy......Page 104
3.3 Spectroscopy of Gases......Page 109
3.4 Spectroscopy of Solids......Page 132
3.5 Spectroscopy of Liquids......Page 147
Problems......Page 150
Bibliography......Page 152
4 Electrodynamics I: Macroscopic Interaction of Light and Matter......Page 153
4.2 Classical Oscillator Model......Page 154
4.3 Reflection and Refraction at a Plane Boundary......Page 177
4.4 Single Scattering......Page 182
Problems......Page 192
Bibliography......Page 194
5.1 Quantum Optics......Page 195
5.2 Statistical Distribution Functions......Page 196
5.3 Quantum Mechanics II......Page 202
5.4 Semiclassical Oscillator Model......Page 209
5.5 The Einstein Relation and Spontaneous Emission......Page 213
5.6 Quantum Optics of Low-Density Gases......Page 215
5.7 Quantum Electronics......Page 233
Problems......Page 240
Bibliography......Page 242
6.1 Refractive Index and Absorption Coefficient Measurements......Page 245
6.2 Scatter Measurements......Page 272
Problems......Page 277
Bibliography......Page 279
PART II: PRACTICAL MODELS FOR VARIOUS MEDIA......Page 281
7.1 The Atmosphere of the Earth......Page 283
7.2 Molecular Absorption and Refraction......Page 291
7.3 Molecular Scattering......Page 348
7.4 Applications and Computer Codes......Page 350
Problems......Page 362
Bibliography......Page 364
8.1 Solid-State Optics......Page 373
8.2 Absorption and Refraction......Page 381
8.3 Scattering......Page 424
8.4 Computer Codes and Examples......Page 427
Problems......Page 439
Bibliography......Page 443
9.1 Optical Properties of Pure Water......Page 447
9.2 Seawater......Page 454
9.3 Applications......Page 458
Bibliography......Page 461
10.1 Particle Distributions and Composition......Page 463
10.2 Particle Absorption and Scatter......Page 466
10.3 Scatter and Atmospheric Optics......Page 469
10.4 Scatter and Ocean Optics......Page 473
10.5 Computer Codes and Examples......Page 474
Problems......Page 476
Bibliography......Page 477
11.1 Path and Background Emission......Page 479
11.2 Scattering into the Path......Page 483
11.3 Photon Noise......Page 484
11.4 Examples of Path Emission and Scatter......Page 485
Bibliography......Page 493
Appendix 1: Symbols and Units......Page 495
Appendix 2: Special Functions......Page 499
Appendix 3: Hilbert and Fourier Transforms......Page 503
Appendix 4: Model Parameters for Gases, Liquids, and Solids......Page 511
Appendix 5: Electromagnetic Field Quantization......Page 567
B......Page 573
E......Page 574
I......Page 575
N......Page 576
R......Page 577
T......Page 578
Z......Page 579