Optical Metrology and Optoacoustics in Nondestructive Evaluation of Materials

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book includes the description, modeling and realization of new optical metrology techniques for technical diagnostics of materials. Special attention is paid to multi-step phase shifting interferometry with arbitrary phase shifts between interferograms, phase shifting and correlation digital speckle pattern interferometry, optical-digital speckle correlation, and digital image correlation, as well as dynamic speckle patterns analysis.

Optoacoustic techniques can be treated as a separate branch of optical metrology and can solve many problems of technical diagnostics, including detection and localization of subsurface defects in laminated composite materials. The utility of such techniques can be increased by illumination of the object via acoustic waves at certain frequencies. Hence, an effective theoretical approach to the modeling of an elastic wave field interaction with an interphase defect, and to defect visualization using dynamic speckle patterns, is also included in this book. The experimental proof of the proposed approaches was achieved using a specially created hybrid optical-digital system for detection of different subsurface defects.

This book is intended for engineers, researchers and students engaged in the field of nondestructive evaluation of materials and technical diagnostics of structural elements, hybrid optical systems, speckle metrology and optoacoustic imaging techniques.

Author(s): Zinoviy Nazarchuk, Leonid Muravsky, Dozyslav Kuryliak
Series: Springer Series in Optical Sciences, 242
Publisher: Springer
Year: 2023

Language: English
Pages: 414
City: Singapore

Preface
Contents
Abbreviations
1 Optical Metrology and Optoacoustics Techniques for Nondestructive Evaluation of Materials
1.1 Phase Shifting Interferometry
1.1.1 Two- and Three-Step PSI with Unknown Phase Shift Between Interferograms
1.1.2 Dual-Wavelength Phase Shifting Interferometry
1.2 Application of Phase Shifting Interferometry Methods for Materials Surface Diagnostics
1.3 Digital Speckle Pattern Interferometry
1.3.1 Method of Two-Step Digital Speckle Pattern Interferometry with Arbitrary Phase Shift of Reference Beam
1.3.2 Application of Digital Speckle Pattern Interferometry for Detection of Surface and Hidden Defects in Metal and Alloy Specimens
1.3.3 Subtractive Synchronized Digital Speckle Pattern Interferometry Method for Detection of Subsurface Defects in Laminated Composites
1.4 Studying Rough Surfaces of Materials by Speckle Metrology Methods
1.4.1 Three-Frame Digital Speckle Pattern Interferometry Method with Unknown Phase Shifts of Reference Beam
1.4.2 Fringe Projection Interferometry for Surface Nondestructive Testing
1.5 Methods for Processing and Analyzing Speckle Patterns of Materials Surface
1.5.1 Optical-Digital Speckle Correlation Method
1.5.2 Comparative Evaluation of Two Methods for Speckle Patterns Correlation
1.5.3 Studying Surface Displacements of Structural Materials Specimens Using Optical-Digital Speckle Correlation Method
1.5.4 Using Digital Image Correlation Technique to Assess Stress–Strain State of Material Near Crack
1.5.5 Detecting Subsurface Defects in Composite Structures Using Speckle Decorrelation
1.6 Mathematical Modeling of Elastic Waves Interaction with Interface Crack-Type Defects
1.7 Conclusions
References
2 Phase Shifting Interferometry Techniques for Surface Parameters Measurement
2.1 Basics of Temporal Single-Wavelength Phase Shifting Interferometry
2.1.1 Optical Arrangement
2.1.2 Methods for Phase Shift Implementation
2.1.3 Phase Shifting Algorithms
2.1.4 Phase Unwrapping
2.2 Dynamic Interferometry
2.3 Practical Application of Temporal and Dynamic Phase Shifting Interferometry
2.4 Two-Step Phase Shifting Interferometry with Unknown Phase Shift Between Interferograms
2.5 Retrieval of Smooth and Nanorough Surfaces Using Two-Step Phase Shifting Interferometry Methods
2.5.1 Method of Two-Step Interferometry with Unknown Phase Shift of a Reference Beam for Retrieving the Nanorough Surface
2.5.2 Assessment of Errors of Unknown Phase Shift Extraction
2.5.3 Computer Simulation of Test Nanorough Surfaces Retrieval
2.5.4 Experimental Verification of Two-Step Interferometry Method with Unknown Phase Shift
2.5.5 Method of Iterative Two-Step Interferometry with Unknown Phase Shift for Retrieving the Nanorough Surface
2.5.6 Retrieval of Test Surface Using Iterative Two-Step Interferometry Method with Unknown Phase Shift
2.6 Method of Three-Step Phase Shifting Interferometry with Unknown Phase Shifts Between Interferograms
2.6.1 Description of the Method of Three-Step Phase Shifting Interferometry with Unknown Phase Shifts
2.6.2 Estimation of Errors
2.6.3 Implementation of the Method of Three-Step Interferometry with Unknown Phase Shifts
2.7 Dual-Wavelength Phase Shifting Interferometry
2.7.1 Basic Methods of Dual-Wavelength Interferometry
2.7.2 Two-Step Dual-Wavelength Interferometry Method: Theoretical Model
2.7.3 Computer Simulation of Two-Step Dual-Wavelength Interferometry Method
2.7.4 Three-Frame Two-Wavelength Interferometry Method
2.7.5 Experimental Verification of Two-Wavelength Phase Shifting Interferometry Methods
References
3 Application of Phase Shifting Interferometry Methods for Diagnostics of Materials Surface
3.1 Determination of Fatigue Process Zone, Cyclic and Monotonic Plastic Zones Parameters
3.1.1 Determination of Fatigue Process Zone Size Using Two-Step Phase Shifting Interferometry Method and Technique 1
3.1.2 Fatigue Process Zone Size Determination by Using Iterative Two-Step Phase Shifting Interferometry Method and Technique 2
3.2 Study of Fatigue Macrocrack Initiation in Thin Compact Tension Specimens
3.2.1 Determination of Site and Time of Fatigue Macrocrack Initiation Along Given Profiles
3.2.2 New Technique for Determining the Site and Time of Fatigue Macrocrack Initiation in Every Pixel of Surface Roughness Height Map
3.2.3 Surface Evolution of the Steel 08kp
3.2.4 Surface Evolution of the Aluminum Alloy D16T
3.2.5 Surface Evolution of the Aluminum Alloy V95T
3.2.6 Discussion and Conclusion
References
4 Digital Speckle Pattern Interferometry for Studying Surface Deformation and Fracture of Materials
4.1 Formation of Speckles and Speckle Interferograms in Optical Systems
4.1.1 Optical Speckles Formation
4.1.2 Formation of Speckle Interferograms in Optical System
4.1.3 Some Restrictions Affecting the Efficiency of Digital Speckle Pattern Interferometry
4.2 Correlation Digital Speckle Pattern Interferometry
4.3 Temporal Phase Shifting Digital Speckle Pattern Interferometry
4.3.1 Basic Algorithms of Temporal Phase Shifting Digital Speckle Pattern Interferometry
4.3.2 Some Applications of Temporal Phase Shifting Digital Speckle Pattern Interferometry
4.4 Two-Step Phase Shifting Digital Speckle Pattern Interferometry with Unknown Phase Shift of Reference Beam
4.4.1 Method of Two-Step Digital Speckle Pattern Interferometry with Unknown Phase Shift of Reference Beam
4.4.2 Simulation of Speckle Interferograms of Test Surface in the Initial and Deformed States
4.4.3 Extraction of Unknown Phase Shift Using Population Pearson Correlation Coefficient
4.4.4 Simulation of Test Phase Field of Surface Displacements
4.4.5 Experimental Verification of Two-Step Digital Speckle Pattern Interferometry Method
4.5 Determination of 3D Displacement Fields by Two-Step Digital Speckle Pattern Interferometry
4.5.1 Experimental Setup of 3D Digital Speckle Interferometer
4.5.2 Research Results on Retrieval of 3D Surface Displacement Fields of Steel and Composite Beam Specimens
4.5.3 Comparative Assessment of In-Plane and Out-of-Plane Surface Displacements
4.5.4 Conclusion
4.6 Application of Digital Speckle Pattern Interferometry in Technical Diagnostics and Nondestructive Testing of Constructive Materials and Structural Elements
4.6.1 Detection of Surface and Hidden Defects in Metal and Alloy Specimens
4.6.2 Study of Regularities of Deformation and Damage of Composites
4.7 Examination of Subsurface Defect in Composite Structures Using Subtractive Synchronized Digital Speckle Pattern Interferometry
4.7.1 Subtractive Synchronized Digital Speckle Pattern Interferometry Method
4.7.2 Experimental Setup of Optical-Digital Speckle Interferometer
4.7.3 Results of Experimental Research
References
5 New Methods of Speckle Metrology in Analysis of Rough Surfaces
5.1 Method for Extraction the Unknown Phase Shift Between Speckle Interferograms Using Sample Pearson Correlation Coefficient
5.2 Simulations to Determine Unknown Phase Shift Using Sample Pearson Correlation Coefficient
5.3 Method of Three-Frame Digital Speckle Pattern Interferometry with Unknown Phase Shifts of Reference Wave
5.4 Fringe Projection Interferometry for Surface Nondestructive Testing
5.4.1 Main Principles of Fringe Projection Techniques
5.4.2 Application of Method of Three-Frame Fringe Projection Interferometry to Retrieve Surface Relief Using Interference Fringe Patterns
5.4.3 Experimental Results for Surface Relief Retrieval Using Interference Fringe Patterns
References
6 Methods for Processing and Analyzing the Speckle Patterns of Materials Surface
6.1 Main Approaches for Determination the Surface Displacements and Strains Using Speckle Patterns
6.1.1 First Approach to Determine the Surface Displacement and Deformation Fields
6.1.2 Second Approach to Determine the Surface Displacement and Deformation Fields
6.2 Optical-Digital Speckle Correlation Method
6.3 Spatial Filtering of the Speckle Pattern Subsets in Joint Transform Correlator
6.3.1 Binarization of Joint Power Spectrum by Median and Subset Median Thresholds
6.3.2 Comparative Analysis of Three JTC Computer Models
6.3.3 Fringe-Adjusted Filters
6.3.4 Binarization of Joint Power Spectrum by Adaptive Median Threshold
6.3.5 Binarization of Joint Power Spectrum by Ring Median Threshold
6.4 Digital Implementation of Optical-Digital Speckle Correlation Method
6.5 Comparative Evaluation of Two Methods for Speckle Patterns Correlation
6.5.1 Synthesized Speckle Patterns in Analysis of Two Methods for Speckle Patterns Correlation
6.5.2 Estimation of Errors in Shifts of Synthesized Speckle Patterns Subsets Using Modified Digital Speckle-Displacement Measurement Method
6.5.3 Estimation of Errors in Shifts of Synthesized Speckle Patterns Subsets Using Optical-Digital Speckle Correlation Method
6.5.4 Comparative Analysis of Optical-Digital Speckle Correlation and Modified Digital Speckle-Displacement Measurement Methods Using Peak-to-Output Noise Ratio and Peak-to-Input Noise Ratio Mean Values
6.5.5 Assessment of Correspondence the Subset Position to the Correlation Peak Position
6.5.6 Experimental Comparison of Modified Digital Speckle-Displacement Measurement and Optical-Digital Speckle Correlation Methods
6.6 Creation of Hybrid Optical-Digital Speckle Correlator Experimental Setup
6.7 Using Digital Image Correlation to Assess Stress–Strain State of Material Near Crack
6.7.1 Development of Stress Field Components Determination Technique Using Digital Image Correlation
6.7.2 Using DIC to Determine the Crack Propagation Angle
6.7.3 Conclusion
6.8 Detecting Subsurface Defects in Composite Structures Using Speckle Decorrelation
6.8.1 Method for Detection the Subsurface Defects in Laminated Composites Using Dynamic Speckle Pattern Sequences
6.8.2 Technical Implementation of the Method for Detection the Subsurface Defects
6.8.3 Algorithms for Processing Total Difference Speckle Patterns
6.8.4 Experiments to Detect the Artificial Subsurface Defects
6.8.5 Experiments to Detect Real Subsurface Defects
6.8.6 Conclusion
References
7 Mathematical Modeling of Elastic Waves Interaction with Interface Crack-Type Defects
7.1 Introduction
7.2 Wiener–Hopf Equation for Solution of the Wave Diffraction Problems
7.2.1 The Convolution Integral Equation and Wiener–Hopf Equation
7.2.2 Reducing the Wave Diffraction Problem to the Wiener–Hopf Equation
7.3 Plane SH-Wave Diffraction from the Finite Crack on the Interface of Materials
7.3.1 Short Overview
7.3.2 Formulation of the Problem
7.3.3 Factorization of the Kernel Function
7.3.4 Decomposition of the Wiener–Hopf Equation. Integral Equations
7.3.5 Analysis of the Integral Equations
7.3.6 Integration Along the Branch Cut in the Complex Plane
7.3.7 Approximate Solutions for Wide Interface Crack
7.3.8 Structure of the Diffracted Fields. Far Field Approximation
7.3.9 Displacement Field Analysis
7.4 Stress Field at the Tips of the Interface Crack
7.4.1 Introduction
7.4.2 Stress Intensity Factor at the Tips of the Interface Crack
7.4.3 Numerical Examples
7.4.4 Stress Intensity Factor of the Interface Semi-infinite Cracks
7.5 SH-Waveguide Modes Diffraction from the Finite Interface Crack on the Rigid Junction of the Elastic Plate and the Semi-space
7.5.1 Introduction
7.5.2 Formulation of the Problem
7.5.3 Solution for Semi-infinite Interface Crack
7.5.4 Solution for the Finite Interface Crack
7.5.5 One Mode Approximation
7.5.6 Numerical Analysis
References
Index