This book is the first to give a detailed description of the factors and processes that govern the optical properties of ion implanted materials, as well as an overview of the variety of devices that can be produced in this way. Beginning with an overview of the basic physics and practical methods involved in ion implantation, the topics of optical absorption and luminescence are then discussed. A chapter on waveguide analysis then provides the background for a description of particular optical devices, such as waveguide lasers, mirrors, and novel nonlinear materials. The book concludes with a survey of the exciting range of potential applications.
Author(s): P. D. Townsend, P. J. Chandler, L. Zhang
Series: Cambridge Studies in Modern Optics
Publisher: CUP
Year: 1994
Language: English
Pages: 294
Cover......Page 1
Intro Blurb......Page 2
Series Editors......Page 4
TITLES IN PRINT IN THIS SERIES......Page 5
Title......Page 6
Copyright......Page 7
Contents......Page 8
Preface......Page 14
1.1 Development of ion implantation 1......Page 16
1.2 Properties influenced by ion implantation 4......Page 19
1.2.1 Mechanical and chemical properties 5......Page 20
1.2.2 Electrical properties 6......Page 21
1.2.3 Optical properties 8......Page 23
Waveguide features......Page 25
1.3 Processes occurring during ion implantation 11......Page 26
1.3.1 Nuclear collisions and high defect densities 12......Page 27
1.3.4 Radiation enhanced diffusion 14......Page 29
1.3.5 Thermal effects 16......Page 31
1.3.6 Compositional effects 17......Page 32
1.4 A summary of the advantages of ion beam processing 18......Page 33
1.5 Pattern definition 20......Page 35
1.7 Summary of implantation effects 21......Page 36
Reviews......Page 37
Conference proceedings......Page 38
2.1 Predictions of range distributions 24......Page 39
2.1.1 Nuclear collisions 27......Page 42
2.1.2 Differential cross-section 29......Page 44
2.1.3 Electronic stopping 31......Page 46
2.1.4 Summary of nuclear and electronic stopping 33......Page 48
2.1.5 Ion range distributions 34......Page 49
2.2 Damage distributions 35......Page 50
2.2.1 Electronic defect formation 38......Page 53
2.2.3 Diffusion, relaxation and amorphisation 39......Page 54
2.2.5 Amorphisation of semiconductors 47......Page 62
2.2.6 Stability of point and cluster defects 49......Page 64
2.2.7 Defect diffusion and crystallography 51......Page 66
2.2.8 Structural and compositional changes 52......Page 67
2.2.9 Conclusions on damage distributions 54......Page 69
2.3 Channelling 55......Page 70
2.4 Sputtering 57......Page 72
2.5 Computer simulations 62......Page 77
2.5.1 Simulation approaches 63......Page 78
2.5.2 Molecular dynamics 65......Page 80
2.5.4 State of simulation programs 66......Page 81
References 67......Page 82
3.1 Analysis methods using absorption, ESR and RBS 70......Page 85
3.2 In situ optical absorption 71......Page 86
3.3 Crystallographic effects on stress and defect motion 75......Page 90
3.4 Sapphire 77......Page 92
3.5 Alkali halides 83......Page 98
3.5.1 F and F 2 centres 85......Page 100
3.5.2 F3, F2' and F3' bands 88......Page 103
3.5.3 Other features 89......Page 104
3.6 Defect complexes 90......Page 105
3.7 Growth curves 93......Page 108
3.8 Molecular beam effects on absorption 95......Page 110
3.9 Isotopic and ion species effects 100......Page 115
3.10 Measurement of oscillator strength 101......Page 116
3.12.1 Amorphisation 103......Page 118
3.12.2 Colloids 105......Page 120
3.12.3 Precipitate phases 108......Page 123
3.13 Summary of problems in interpretation 109......Page 124
References 112......Page 127
4.1 Luminescence processes 115......Page 130
4.2 Luminescence during ion implantation 116......Page 131
4.3 Effects of implantation temperature 117......Page 132
4.4.1 Alkali halides - excitons 119......Page 134
4.4.2 Alkali halides - a search for bi-excitons 122......Page 137
4.4.4 Silica 123......Page 138
4.4.5 Sapphire 127......Page 142
4.4.6 LiNb03 - impurity and stoichiometric effects 130......Page 145
4.4.7 LiNb03 - excitons 132......Page 147
4.4.8 Surface impurity emission 133......Page 148
4.5 Photoluminescence 135......Page 150
4.5.2 Synthesis of new semiconductor alloys 136......Page 151
4.6 Waveguide lasers 137......Page 152
4.7.1 Silica and quartz 140......Page 155
4.7.2 CaF2 143......Page 158
4.8 Impurity doping of CaO 145......Page 160
4.9 Cathodoluminescence 146......Page 161
4.10 Depth effects 147......Page 162
References 148......Page 163
5.1 Characteristics of ion implanted waveguides 151......Page 166
5.2 Waveguide mode theory 152......Page 167
5.2.1 Maxwell equation approach 154......Page 169
5.2.2 Quantum mechanics analogy 158......Page 173
5.3.1 End coupling 160......Page 175
5.3.2 Prism coupling 163......Page 178
5.4.1 WKB approximation for a graded index profile 167......Page 182
5.4.2 Ion implanted optical barrier waveguides 168......Page 183
5.4.3 Reflectivity calculation method (RCM) 169......Page 184
5.4.4.1 Analytic profile for a barrier waveguide......Page 190
5.4.4.2 Mode index curve......Page 191
5.4.5.1 Single-barrier profile......Page 194
5.4.5.2 Double-barrier profile......Page 196
5.4.6 Thin film reflectivity method 183......Page 198
5.5 Planar waveguide attenuation 189......Page 204
5.5.1 Prism methods 190......Page 205
5.5.2 Insertion loss 192......Page 207
References 194......Page 208
6 Ion implanted optical waveguides 196......Page 211
6.1.1 Conventional fabrication methods 197......Page 212
6.1.2 Fabrication by ion implantation structural effects 198......Page 213
6.1.3 Chemically formed ion implanted waveguides 200......Page 215
6.2 Summary of effects of ion implantation on index 201......Page 216
6.4 Crystalline quartz 202......Page 217
6.5.1 Lithium niobate 207......Page 221
6.5.2 Optical damage in lithium niobate 213......Page 227
6.5.3 Other niobates 215......Page 229
6.6 Tantalates 217......Page 231
6.7 Bismuth germanate 219......Page 233
6.8.1 Garnets 222......Page 236
6.8.2 Other laser substrates 226......Page 240
6.9 Non-linear materials 228......Page 242
6.10 Other crystalline materials 232......Page 246
6.11 Non-crystalline materials 233......Page 247
6.13 Ion implanted chemical waveguides 238......Page 252
6.14 Summary of progress so far 241......Page 255
References 242......Page 256
7 Applications of ion implanted waveguides 247......Page 261
7.1.1 Channel waveguides 248......Page 262
7.1.2 Optical writing 251......Page 265
7.1.3 Double barrier implants 253......Page 267
7.2 Ion implanted waveguide lasers 255......Page 269
7.2.1 Spectroscopic effects 259......Page 273
7.2.2 Planar waveguide laser performance 260......Page 274
7.2.3 Channel waveguide lasers 263......Page 277
7.3 Frequency doubling 264......Page 278
7.3.1 Quartz 265......Page 279
7.3.2 Potassium niobate 266......Page 280
7.3.3 Potassium titanyl phosphate 270......Page 284
7.4 Photorefractive effects 272......Page 286
7.5 Future and related applications 275......Page 289
References 277......Page 291
Index 279......Page 293