Operators on k-tableaux and the k-Littlewood-Richardson rule for a special case

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Sarah Elizabeth Iveson
Series: PhD thesis at University of California, Berkeley
Year: 2012

Language: English

Contents ii
List of Figures iv
List of Tables v
1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Where k-Schur functions came from . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Strategies used to prove the k-Littlewood–Richardson rule . . . . . . . . . . 3
2 Background 5
2.1 Partitions, tableaux, k + 1-cores . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Symmetric functions and Schur functions . . . . . . . . . . . . . . . . . . . . 9
2.3 k-tableaux and k-Schur functions . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Properties of entries in k-tableaux . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Some operators on k-tableaux 19
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Properties of the operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 The operator s (k)
i
e (k)
i
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 The k-lattice property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4 A proof of the k-Littlewood–Richardson rule in a restricted case 30
4.1 The proof of the k-Littlewood–Richardson rule . . . . . . . . . . . . . . . . . 30
4.2 An example of the bijection used for the proof . . . . . . . . . . . . . . . . . 33
4.3 An explanation of the requirements on µ and problems with generalizing the
proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 An alternate proof of the k-Littlewood–Richardson rule for µ = (a,b) 37
5.1 The alternate proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 Problems with generalizing the classical case and an example . . . . . . . . . 41
6 A strategy for computing k-Littlewood–Richardson coefficients 44
7 The scalar product of a dual k-Schur function and a Schur function 47
Bibliography 50