This book provides a comprehensive introduction to modern global variational theory on fibred spaces. It is based on differentiation and integration theory of differential forms on smooth manifolds, and on the concepts of global analysis and geometry such as jet prolongations of manifolds, mappings, and Lie groups. The book will be invaluable for researchers and PhD students in differential geometry, global analysis, differential equations on manifolds, and mathematical physics, and for the readers who wish to undertake further rigorous study in this broad interdisciplinary field. Featured topics - Analysis on manifolds - Differential forms on jet spaces - Global variational functionals - Euler-Lagrange mapping - Helmholtz form and the inverse problem - Symmetries and the Noether's theory of conservation laws - Regularity and the Hamilton theory - Variational sequences - Differential invariants and natural variational principles - First book on the geometric foundations of Lagrange structures - New ideas on global variational functionals - Complete proofs of all theorems - Exact treatment of variational principles in field theory, inc. general relativity - Basic structures and tools: global analysis, smooth manifolds, fibred spaces
Author(s): Demeter Krupka
Series: NHML020
Publisher: Elsevier Science
Year: 1980
Language: English
Pages: 424
ii......Page 1
iii......Page 2
iv......Page 3
005......Page 4
007......Page 5
021-......Page 7
025-......Page 11
031-......Page 17
037......Page 23
039......Page 25
045......Page 28
053......Page 36
059......Page 42
063......Page 46
079......Page 62
089......Page 70
104......Page 85
107......Page 88
123......Page 104
130......Page 111
145......Page 123
168......Page 146
178......Page 156
190......Page 168
206......Page 184
223......Page 199
228......Page 204
243......Page 219
262......Page 238
279......Page 255
288......Page 264
299......Page 275
323......Page 299
335......Page 308
348......Page 321
358......Page 331
367......Page 340
383......Page 356
393......Page 366
406......Page 379
409......Page 382
439......Page 412
447......Page 420