The book is organized as follows. We concentrate our attention on three subjects of semigroup theory: characterization, spectral theory and asymptotic behavior. By characterization , we understand the problem of describing special properties of a semigroup, such as positivity, through the generator. By spectral theory we mean the investigation of the spectrum of a generator. Asymptotic behavior refers to the orbits of the initial values under a given semigroup and phenomena such as stability.
Author(s): Wolfgang Arendt, Annette Grabosch, Günther Greiner, Ulrich Moustakas, Rainer Nagel, Ulf Schlotterbeck, Ulrich Groh, Heinrich P. Lotz, Frank Neubrander (auth.), Rainer Nagel (eds.)
Series: Lecture Notes in Mathematics 1184
Edition: 1
Publisher: Springer-Verlag Berlin Heidelberg
Year: 1986
Language: English
Pages: 464
City: Berlin; New York
Tags: Algebra
Basic results on semigroups on banach spaces....Pages 1-24
Characterization of semigroups on banach spaces....Pages 25-59
Spectral theory....Pages 60-97
Asymptotics of semigroups on banach spaces....Pages 98-116
Basic results on spaces C o (X)....Pages 117-121
Characterization of positive semigroups on C o (X)....Pages 122-162
Spectral theory of positive semigroups on C o (X)....Pages 163-203
Asymptotics of positive semigroups on C o (X)....Pages 204-232
Basic results on banach lattices and positive operators....Pages 233-246
Characterization of positive semigroups on banach lattices....Pages 247-291
Spectral theory of positive semigroups on banach lattices....Pages 292-332
Asymptotics of positive semigroups on banach lattices....Pages 333-367
Basic results on semigroups and operator algebras....Pages 369-375
Characterization of positive semigroups on w * -algebras....Pages 376-378
Spectral theory of positive semigroups on w * -algebras and their preduals....Pages 379-399
Asymptotics of positive semigroups on c * -and w * -algebras....Pages 400-425