Author(s): Rachel Ollivier, Peter Schneider
Series: Memoires de la Société Mathématique de France 175
Publisher: Société Mathématique de France
Year: 2022
Language: English
Pages: 98
Chapter 1. Introduction
Chapter 2. Notations, preliminaries and results on the top cohomology
2.1. The pro-p-Iwahori Hecke algebra
2.2. The Ext-algebra
2.3. The top cohomology Ed when G is almost simple simply connected
2.4. The pro-p-Iwahori Hecke algebra of SL2
2.5. On some values of the functor Hd(I, -) when G=SL2
Chapter 3. Formulas for the left action of H on E1 when G=SL2(Qp), p=2,3
3.1. Conjugation by
3.2. Elements of E1 as triples
3.3. Image of a triple under the anti-involution J
3.4. Action of on E1 for
3.5. Action of the idempotents e
3.6. Action of H on E1 when G=SL2(Qp), p=2,3
3.7. Sub-H-bimodules of E1
Chapter 4. Formulas for the left action of H on Ed-1 when G=SL2(Qp) , p=2,3
4.1. Elements of Ed-1 as triples
4.2. Left action of on Ed-1 for
4.3. Left action of H on E2 when G=SL2(Qp) , p=2,3
Chapter 5. k[]-torsion in E* when G=SL2(Qp), p=2,3
Chapter 6. Structure of E1 and E2 when G=SL2(Qp), p=2,3
6.1. Preliminaries
6.2. Structure of E1
6.3. Structure of E2
Chapter 7. On the left H-module H*(I, V) when G=SL2(Qp) with p=2,3 and V is of finite length
Chapter 8. The commutator in E* of the center of H when G=SL2(Qp), p=2,3
8.1. The product (CE1(Z) , CE1(Z) )CE2(Z)
8.2. The products (CEi(Z) , CE3-i(Z) )CE3(Z) for i=1,2
Chapter 9. Appendix
9.1. Proof of Proposition 2.1
9.2. Computation of some transfer maps
9.3. Proof of Proposition 3.9
9.4. Proof of Proposition 4.5
References
Bibliography