On the Combinatorics of Representations of Classical Linear Groups

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Shiyuan Wei
Series: PhD Thesis
Publisher: Pennsylvania State University
Year: 1990

Language: English

A cknow ledgm ents ............................................................................................. viii
List of Figures ..................................................................................................... vii
C hapter 1. P relim inaries .................................................................................. 1
1.1 Partitions and Lattice P a th ..................................................................... 1
1.2 Roots System and Weyl Group ..............................................................3
1.3 Symmetric Functions and the Schur Function ................................... 4
1.4 The Involutionary M ethod ...................................................................... 8
C hapter 2. Com binatorial Equivalence of Definitions
of the Schur Function .............................................................................. 9
2.1 The Definitions of the Schur Function ................................................. 9
2.2 The Gessel-Viennot Correspondence .................................................. 11
2.3 Equivalence of Definitions 2.1.1 and 2.1.4 ......................................... 13
2.4 Equivalence of Definitions 2.1.2 and 2.1.3 ......................................... 15
C hapter 3. N -tuple of Lattice Paths and the C orresponding
D eterm inants ............................................................................................... 18
3.1 The Determinant \ det(/iA;-i+j + ^a,-«-j+2) • • 18
3.2 The Determinant \ det(/i.\i_i+j+AAl-i-j+ 2+/iAj-i+i-i+/»A1-i-i+ i)
20
3.3 The Determinant \ det(hAi-i+j - /iA,-.+i-2 + /ia.-.+j-i “ ftA,-i-j)
22
C hapter 4. Com binatorial R epresentations of Irreducible
C haracters of Sp(2n), S O (2n+ l) and S O (2 n ) ............................. 25
4.1 The Proof of Identity S p \(xf1, . .., x*1)
= | d e t ( / i A i - i + j + h\i-i-j+2 ) ......................................................... 2 6
4.2 A New Interpretation of the Character 50A(xjfcl, . •., a?*1, *) • • • 43
4.3 A New Interpretation of the Character SO xfaf1, . . .,1^ ) ........ 54
C h a p t e r 5 . C o n c l u s i o n .................................................................................... 6 1
Bibliography 63