Numerical Simulation of Reactive Flow

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Reactive flows encompass a broad range of physical phenomena, interacting over many different time and space scales. Such flows occur in combustion, chemical lasers, the earth's oceans and atmosphere, and in stars. Because of a similarity in their descriptive equations, procedures for constructing numerical models of these systems are also similar, and these similarities can be exploited. Moreover, using the latest technology, what were once difficult and expensive computations can now be done on desktop computers. This new edition of a highly successful book presents algorithms useful for reactive flow simulations, describes trade-offs involved in their use, and gives guidance for building and using models of complex reactive flows. It takes account of the explosive growth in computer technology and the greatly increased capacity for solving complex reactive-flow problems that has occurred since the previous edition was published more than fifteen years ago. An indispensable guide on how to construct, use, and interpret numerical simulations of reactive flows, this book will be welcomed by advanced undergraduate and graduate students, and a wide range of researchers and practitioners in engineering, physics, and chemistry.

Author(s): Elaine S. Oran, Jay P. Boris
Edition: 2ed.
Publisher: CUP
Year: 2005

Language: English
Pages: 550

Cover......Page 1
About......Page 2
Numerical Simulation ofReactive Flow, Second edition......Page 4
Copyright - ISBN: 0521581753......Page 5
Contents......Page 8
Prologue......Page 16
1-1. Some Comments on Terminology......Page 22
1-2. A Classification of Models......Page 24
1-3. Statistical Averaging or Chunking......Page 25
1-4. The Hierarchy of Levels of Simulation......Page 26
1-5. The Growth of Computational Capability......Page 29
1-6. The Tyranny of Numbers......Page 31
1-7. A Bridge between Theory and Experiment......Page 32
1-8. Themes of This Book......Page 34
References......Page 35
2-1.1. Time-Dependent Conservation Equations......Page 36
2-1.2. Physical Phenomena Represented in the Equations......Page 40
2-1.4. Equations of State......Page 42
2-2.1. Convective Transport......Page 44
2-2.2. Reaction Kinetics......Page 46
2-2.3. Diffusive Transport......Page 47
2-2.4. Radiation Transport......Page 48
2-2.5. Wavelike Behavior......Page 49
2-3.1. Dimensionless Numbers......Page 50
2-3.2. Specific Interactions......Page 53
2-4.1. Interactions among Phases......Page 55
2-4.2. An Example of Multiphase Flow Equations......Page 56
2-4.3. The Complexity of Multiphase Models......Page 57
2-5. Finding Input Data......Page 58
References......Page 59
3 Models and Simulation......Page 61
3-1.1. Posing Scientific Problems for Modeling......Page 62
3-1.2. Selecting the Computer System to Use......Page 63
3-1.3. Choosing the Computational Representation......Page 65
3-2. Limiting Factors and Constraints......Page 66
3-2.1. Limitations in Accuracy......Page 67
3-2.2. The Costs of Complexity......Page 69
3-2.3. Using Phenomenological Models......Page 71
3-3.1. Trade-Offs in Selecting and Optimizing Models......Page 73
3-3.2. Steps in Constructing a Simulation Model......Page 74
3-3.3. Testing Programs and Models......Page 76
3-4.1. Partitioning Time among Tasks......Page 79
3-4.2. Documenting and Retrieving Results of Simulations......Page 80
3-4.3. Some General Programming Guidelines......Page 81
3-5.1. Parallel Processing: The Future of Large-Scale Scientific Computing?......Page 85
3-5.2. Programming for Parallel Computers......Page 86
References......Page 89
4 Some General Numerical Considerations......Page 91
4-1.1. Discretizing Time and Space......Page 92
4-1.2. Advancing Equations in Time and Space......Page 94
4-1.3. Qualitative Properties of Numerical Algorithms......Page 96
4-1.4. Approaches to Analyzing Accuracy......Page 98
4-1.5. Types of Finite-Difference Errors......Page 100
4-2.1. Explicit and Implicit Solutions......Page 103
4-2.2. Asymptotic Solutions......Page 107
4-3.1. The Diffusion Equation......Page 109
4-3.2. An Analytic Solution: Decay of a Periodic Function......Page 110
4-3.3. Explicit and Implicit Solutions......Page 111
4-3.5. Physical Diffusion and Numerical Diffusion......Page 114
4-4.1. Fluid Dynamic Flows: Advection and Compression......Page 115
4-4.2. The Square-Wave Test Problem......Page 117
4-4.3. Explicit and Implicit Solutions......Page 118
4-4.4. Phase and Amplitude Errors for Common Algorithms......Page 122
4-5.1. Waves from Coupling Continuity Equations......Page 125
4-5.2. An Explicit Staggered Leapfrog Algorithm......Page 126
4-5.3. A Reversible Implicit Algorithm......Page 129
4-5.4. Reversibility, Stability, and Accuracy......Page 130
4-6. Approaches to Coupling the Terms......Page 131
References......Page 133
5 Ordinary Differential Equations: Reaction Mechanisms and Other Local Phenomena......Page 135
5-1.1. The Initial Value Problem......Page 136
5-1.2. Accuracy, Convergence, and Stability......Page 137
5-1.3. Stiff Ordinary Differential Equations (ODEs)......Page 141
5-2.1. One-Step Methods......Page 143
5-2.2. Linear Multistep Methods......Page 144
5-2.3. Extrapolation Methods......Page 147
5-2.4. Leapfrog Integration Methods......Page 148
5-3.1. Stability and Stiff ODEs.......Page 150
5-3.2. Implicit Methods for Stiff ODEs......Page 152
5-3.3. Useful Methods for Solving of Stiff ODEs......Page 153
5-3.4. Summary: Some Important Issues......Page 159
5-4. Useful Information and Techniques......Page 160
5-4.1. Solving Temperature Equations......Page 161
5-4.2. Sensitivity Analysis......Page 162
5-4.3. Integration Packages for Solving ODEs......Page 166
5-5. Reduced Reaction Mechanisms for Reactive Flows......Page 170
5-5.1. The Induction Parameter Model......Page 171
5-5.2. Computational Singular Perturbations......Page 172
5-5.3. Intrinsic Low-Dimensional Manifolds......Page 174
References......Page 175
6-1. Representations of Convective Flows......Page 180
6-1.1. Why Convection Is Difficult to Simulate......Page 181
6-1.2. The Continuity Equation......Page 182
6-1.3. Lagrangian versus Eulerian Representations......Page 183
6-2. Discretizing a Continuous Variable......Page 184
6-2.1. Grid-Based Representations......Page 185
6-2.2. Eulerian Grid Representations......Page 186
6-2.3. Expansion and Spectral Representations......Page 189
6-2.4. Lagrangian and Unstructured Grid Representations......Page 191
6-2.5. Macroparticle Representations......Page 192
6-3. Gridding to Represent Complex Geometry......Page 194
6-3.1. Eulerian, Body-Fitted Grids......Page 195
6-3.2. Overset Grids......Page 197
6-3.3. Unstructured Grids......Page 199
6-3.4. Globally Structured Cartesian Grids......Page 201
6-4.1. Strategies for Refining and Coarsening a Grid......Page 204
6-4.2. Adaptive Mesh Redistribution on Multidimensional Cartesian Grids......Page 208
6-4.3. Adaptive Mesh Refinement on Multidimensional Cartesian Grids......Page 210
6-4.4. AMR and Overset Grids......Page 213
6-4.5. AMR and Unstructured Grids......Page 215
6-5.1. Errors Introduced by Grid Representations......Page 217
6-5.3. The Connection between Resolution and Accuracy......Page 219
References......Page 220
7 Diffusive Transport Processes......Page 225
7-1.1. The Physical Origin of Diffusive Effects......Page 226
7-1.2. The d-Function Test Problem......Page 227
7-1.3. Short- and Long-Wavelength Breakdowns......Page 231
7-2.1. A Finite-Difference Formula in One Dimension......Page 232
7-2.2. Implicit Solutions Using Tridiagonal Matrix Inversions......Page 233
7-2.3. Large Variations in Δx and D......Page 234
7-3.1. Nonlinear Diffusion Effects......Page 236
7-3.2. Numerical Techniques for Nonlinear Diffusion......Page 239
7-3.4. Flux Limiters......Page 241
7-4.1. Implicit, Explicit, and Centered Algorithms......Page 242
7-5.1. The Fickian Diffusion Approximation......Page 245
7-5.2. An Efficient Iterative Algorithm......Page 247
7-6.1. Thermal Conductivity......Page 249
7-6.2. Ordinary (or Molecular or Binary) Diffusion......Page 250
7-6.4. Viscosity......Page 251
References......Page 252
8 Computational Fluid Dynamics: Continuity Equations......Page 254
8-1.1. The Basic One-Step Method......Page 256
8-1.2. Two-Step Richtmyer Methods......Page 258
8-1.3. The MacCormack Method......Page 259
8-1.4. Pad´e or Compact Finite-Difference Methods......Page 260
8-2. Positivity, Monotonicity, and Accuracy......Page 261
8-3. Monotone Convection Algorithms and Flux Limiting......Page 267
8-3.1. The Basic Idea of Flux-Corrected Transport......Page 268
8-3.2. Generalizations and Extensions of FCT Algorithms......Page 270
8-3.3. The Effects of Order on FCT......Page 272
8-3.4. Other Approaches to Monotonicity......Page 275
8-4.1. Lax-Wendroff Methods......Page 277
8-4.2. FCT for Coupled Continuity Equations......Page 279
8-4.3. Multidimensions through Timestep Splitting......Page 281
8-4.4. Considerations for Multidimensional Monotone Algorithms......Page 284
8-4.5. Flux-Corrected Transport Packages......Page 288
8-5.1. Galerkin, Tau, and Collocation Approximations......Page 291
8-5.2. Spectral Methods......Page 293
8-5.3. Finite-Element Methods......Page 296
8-5.4. Spectral-Element Methods......Page 298
8-5.5. Wavelet Methods......Page 299
8-6. Resolution and Reynolds-Number Limitations......Page 300
References......Page 302
9 Computational Fluid Dynamics: Using More Flow Physics......Page 307
9-1.1. Equations of Compressible and Incompressible Flow......Page 308
9-1.2. Characteristic Trajectories......Page 311
9-1.3. Time Integration......Page 312
9-2. Methods for Fast Flows......Page 313
9-2.1. The Riemann Problem and Godunov Methods......Page 316
9-2.2. The Boltzmann Gas-Kinetic and Flux-Vector Splitting Methods......Page 318
9-2.3. Comparisons and Caveats......Page 320
9-2.4. Shock Fitting and the Method of Characteristics......Page 324
9-3. Methods for Incompressible Flows......Page 326
9-3.1. Pseudocompressibility Methods......Page 328
9-3.2. Projection Methods......Page 329
9-3.3. Implicit Pressure Formulations......Page 331
9-4. Methods for Slow Flows......Page 332
9-4.1. The Slow-Flow Methods......Page 333
9-4.2. An Implicit Flux-Corrected Transport Algorithm......Page 335
9-4.3. Several Implicit Algorithms......Page 339
9-5. Lagrangian Fluid Dynamics......Page 341
9-5.1. Advantages and Limitations of Lagrangian Methods......Page 342
9-5.2. A One-Dimensional Implicit Lagrangian Algorithm......Page 344
9-5.3. Multidimensional Lagrangian Algorithms......Page 351
9-5.4. Free-Lagrange Methods......Page 352
9-6. Lagrangian Particle and Quasiparticle Methods......Page 355
9-6.1. Quasiparticle Methods......Page 356
9-6.2. Smooth-Particle Hydrodynamics......Page 359
9-6.3. Lattice-Gas (Cellular) Automata......Page 361
9-7.1. Vortex Dynamics......Page 363
9-7.3. Contour Dynamics......Page 365
9-7.4. Some Comments on Vortex Methods......Page 366
References......Page 367
10 Boundaries, Interfaces, and Implicit Algorithms......Page 374
10-1.1. General Comments on Boundary Conditions......Page 375
10-1.2. Boundary Conditions for Confined Domains......Page 377
10-1.3. Boundary Conditions for Unconfined Domains......Page 383
10-1.4. Conditions for a Thermal Boundary Layer......Page 387
10-2. Boundary Conditions for High-Order Algorithms......Page 390
10-2.1. Use of Characteristics......Page 392
10-2.2. Problems with Acoustic Radiation in CFD......Page 395
10-3. Interfaces and Discontinuities......Page 396
10-3.1. Resolving Active Interfaces......Page 397
10-3.3. Surface-Tracking Methods......Page 402
10-3.4. Volume-Tracking Methods......Page 405
10-3.5. Some Concluding Remarks......Page 408
10-4.1. Statement of the Problem......Page 409
10-4.2. Exact Solution of the Matrix Equation......Page 411
10-4.3. Tridiagonal Matrices......Page 412
10-4.4. Direct Solutions of the Poisson Equation......Page 414
10-4.5. Iterative Solutions of Elliptic Equations......Page 416
10-4.6. Multigrid Iteration Methods......Page 420
10-4.7. Summary......Page 421
References......Page 422
11 Coupling Models of Reactive-Flow Processes......Page 426
11-1.1. Global-Implicit Coupling......Page 427
11-1.2. Timestep Splitting......Page 429
11-1.3. Trade-Offs in the Choice of Methods......Page 430
11-2. Coupling Physical Processes in Reactive Flows......Page 432
11-2.1. Coupling for Fluid Dynamics, Species Reactions, and Diffusion......Page 433
11-2.2. Timestep Control......Page 439
11-3. More on Coupling: Warnings and Extensions......Page 441
11-3.1. General Comments......Page 442
11-3.2. Including Gravity......Page 446
11-3.3. Implicit, Lagrangian, and Navier-Stokes Fluid Dynamics......Page 447
11-3.4. Multiphase Flows......Page 449
11-4.1. The General Formulation......Page 452
11-4.2. An Example......Page 454
11-5. More-Complex Spatial and Temporal Coupling......Page 457
11-5.1. A Classification of Time and Space Scales......Page 458
11-5.2. Intermittent Embedding: An Advanced Coupling Problem......Page 460
References......Page 462
12 Turbulent Reactive Flows......Page 464
12-1.1. An Overview of Current Concepts and Approaches......Page 465
12-1.2. Direct Numerical Simulation......Page 468
12-1.3. Turbulence-Averaged Navier-Stokes Equations......Page 469
12-1.4. Turbulence Modeling and Reynolds-Stress Models......Page 472
12-1.5. Probability Distribution-Function Methods......Page 473
12-2. Large-Eddy Simulation and Subgrid Models......Page 474
12-2.1. Overview of Large-Eddy Simulation......Page 475
12-2.2. The Ideal Subgrid Turbulence Model......Page 478
12-2.3. Four Fortunate Circumstances for Turbulence Simulations......Page 480
12-3.1. Some Problems in Modeling Turbulent Reactive Flows......Page 483
12-3.2. Overview of Turbulent Combustion......Page 487
12-3.3. DNS and LES of Turbulent Reactive Flows......Page 489
12-3.4. Turbulent Combustion Models......Page 491
12-4. Monotone-Integrated Large-Eddy Simulation......Page 494
12-4.1. Why MILES Should Work......Page 495
12-4.2. Tests of the Underlying Concepts......Page 497
12-4.3. Empirical Evidence that MILES Works for Complex Flows......Page 499
12-4.4. Conclusions and Speculations......Page 501
References......Page 504
13 Radiation Transport and Reactive Flows......Page 509
13-1. The Physical Basis of Radiation Transport......Page 510
13-2.1. The Radiative-Transfer Equation......Page 513
13-2.2. The Radiant Energy Flux......Page 517
13-2.3. Important Limiting Cases......Page 518
13-2.4. Monte Carlo Methods......Page 519
13-3. Radiation Diffusion Approximations......Page 520
13-3.2. The Variable Eddington Approximation......Page 521
13-4. Other Solution Methods......Page 524
13-4.1. The Zonal Method......Page 525
13-4.2. Flux or Expansion Methods......Page 528
13-4.3. The Discrete-Ordinate or Sn Method......Page 530
13-5. Using These Models for Reactive Flows......Page 533
References......Page 539
Index......Page 542