Author(s): Jaan Kiusalaas
Publisher: Cambridge University Press
Year: 2005
Language: English
Pages: 432
City: New York
Contents......Page 5
1.1 General Information......Page 9
1.2 Core Python......Page 12
1.3 Functions and Modules......Page 24
1.4 Mathematics Modules......Page 25
1.5 numarray Module......Page 27
1.6 Scoping of Variables......Page 31
1.7 Writing and Running Programs......Page 33
2.1 Introduction......Page 35
2.2 Gauss Elimination Method......Page 42
2.3 LU Decomposition Methods......Page 49
2.4 Symmetric and Banded Coefficient Matrices......Page 64
2.5 Pivoting......Page 75
∗2.6 Matrix Inversion......Page 90
∗2.7 Iterative Methods......Page 93
∗2.8 Other Methods......Page 109
3.1 Introduction......Page 111
3.2 Polynomial Interpolation......Page 112
3.3 Interpolation with Cubic Spline......Page 123
3.4 Least-Squares Fit......Page 133
3.5 Other Methods......Page 149
4.1 Introduction......Page 150
4.2 Incremental Search Method......Page 151
4.3 Method of Bisection......Page 153
4.4 Brent’s Method......Page 156
4.5 Newton–Raphson Method......Page 162
4.6 Systems of Equations......Page 166
∗4.7 Zeroes of Polynomials......Page 178
4.8 Other Methods......Page 187
5.1 Introduction......Page 189
5.2 Finite Difference Approximations......Page 190
5.3 Richardson Extrapolation......Page 195
5.4 Derivatives by Interpolation......Page 198
6.1 Introduction......Page 206
6.2 Newton–Cotes Formulas......Page 207
6.3 Romberg Integration......Page 215
6.4 Gaussian Integration......Page 224
∗6.5 Multiple Integrals......Page 241
7.1 Introduction......Page 256
7.2 Taylor Series Method......Page 257
7.3 Runge–Kutta Methods......Page 263
7.4 Stability and Stiffness......Page 280
7.5 Adaptive Runge–Kutta Method......Page 283
7.6 Bulirsch–Stoer Method......Page 291
7.7 Other Methods......Page 302
8.1 Introduction......Page 303
8.2 Shooting Method......Page 304
8.3 Finite Difference Method......Page 318
9.1 Introduction......Page 332
9.2 Jacobi Method......Page 334
9.3 Inverse Power and Power Methods......Page 351
9.4 Householder Reduction to Tridiagonal Form......Page 366
9.5 Eigenvalues of Symmetric Tridiagonal Matrices......Page 373
9.6 Other Methods......Page 388
10.1 Introduction......Page 389
10.2 Minimization Along a Line......Page 391
10.3 Conjugate Gradient Methods......Page 397
10.4 Other Methods......Page 415
Appendices......Page 417
Index......Page 427