Number theory: Dreaming in dreams: Proc. of the 5th China-Japan seminar

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This volume aims at collecting survey papers which give broad and enlightening perspectives of various aspects of number theory. Kitaoka's paper is a continuation of his earlier paper published in the last proceedings and pushes the research forward. Browning's paper introduces a new direction of research on analytic number theory - quantitative theory of some surfaces and Bruedern et al's paper details state-of-the-art affairs of additive number theory. There are two papers on modular forms - Kohnen's paper describes generalized modular forms (GMF) which has some applications in conformal field theory, while Liu's paper is very useful for readers who want to have a quick introduction to Maass forms and some analytic-number-theoretic problems related to them. Matsumoto et al's paper gives a very thorough survey on functional relations of root system zeta-functions, Hoshi-Miyake's paper is a continuation of Miyake's long and fruitful research on generic polynomials and gives rise to related Diophantine problems, and Jia's paper surveys some dynamical aspects of a special arithmetic function connected with the distribution of prime numbers. There are two papers of collections of problems by Shparlinski on exponential and character sums and Schinzel on polynomials which will serve as an aid for finding suitable research problems. Yamamura's paper is a complete bibliography on determinant expressions for a certain class number and will be useful to researchers. Thus the book gives a good-balance of classical and modern aspects in number theory and will be useful to researchers including enthusiastic graduate students.

Author(s): Takshi Aoki, Shigeru Kanemitsu, Jianya Liu
Series: Series on Number Theory and Its Applications
Publisher: WS
Year: 2010

Language: English
Pages: 267

CONTENTS......Page 14
Preface......Page 7
1. Introduction......Page 16
2. Geometry of V0......Page 19
3. Overview of the proof......Page 21
3.1. Reduction to conics of low height......Page 22
3.2. Parametrisation of the conics......Page 24
3.3. Lattice point counting in the plane......Page 25
3.4. Divisor problem for binary forms......Page 26
3.5. Comparison with Peyre’s constant......Page 28
4. Further exploration......Page 31
References......Page 33
1.1. Diophantine inequalities......Page 35
1.2. Additive cubic forms......Page 36
1.3. Linear forms in primes......Page 40
1.4. Further applications......Page 42
1.5. A related diophantine inequality......Page 43
2.1. Some classical integrals......Page 44
2.2. Counting solutions of diophantine inequalities......Page 45
2.3. Weighted counting......Page 47
2.4. The central interval......Page 50
2.5. The interference principle......Page 53
3.1. Plancherel’s identity......Page 55
3.2. Some mean values......Page 56
3.3. The amplification technique......Page 58
3.4. Linear forms in primes......Page 59
3.5. Bessel’s inequality......Page 60
4.2. Exponential sums over test sequences......Page 61
4.3. Potential applications......Page 63
5.1. An illustrative example......Page 64
5.2. A quadratic average......Page 66
5.4. An inequality involving quadratic polynomials......Page 69
5.5. An application of Vinogradov’s method......Page 70
5.6. Linear forms in primes, yet again......Page 71
6.1. Smooth cubic Weyl sums......Page 73
6.2. Senary cubic forms......Page 74
6.3. Two technical estimates......Page 76
6.4. The lower bound variant......Page 77
6.5. An auxiliary inequality......Page 80
6.6. Additive forms of large degree......Page 83
6.7. Proof of Theorem 1.8......Page 85
6.8. Proof of Theorem 1.9......Page 86
7.1. The counting integral......Page 89
7.3. The complementary compositum......Page 90
References......Page 91
1. Introduction......Page 95
2. Dynamics of the w function......Page 96
3. Inverse problem......Page 97
4. The sketch of the proof of Theorem 3.5......Page 99
References......Page 101
Some Diophantine problems arising from the isomorphism problem of generic polynomials Akinari Hoshi and Katsuya Miyake......Page 102
1. Introduction......Page 103
2. Some results: the cubic case......Page 105
3. A parametric family of Thue equations......Page 107
4. The case of D4......Page 110
5. Numerical examples: the case of C4......Page 111
6. Numerical examples: the case of D5......Page 112
7. Appendix......Page 116
References......Page 118
1. Introduction and Conjectures......Page 121
1.1. Irreducible case......Page 127
1.2. Reducible case......Page 131
2.1. n = 3......Page 132
2.4. n = 6......Page 133
2.6. n = 8......Page 134
2.7. n = 9......Page 135
2.9. n = 12......Page 136
2.10. n = 15......Page 139
2.11. Other examples......Page 140
References......Page 141
2. Generalized modular functions, main features of the theory and examples......Page 142
3. Fourier coefficients of GMF’s......Page 146
References......Page 149
2. A method to evaluate the Riemann zeta-function......Page 150
3. Functional relations for ζ2(s1, s2, s3;A2)......Page 157
4. Another method to construct functional relations for Dirichlet series......Page 161
5. A general form of functional relations......Page 163
6. Some lemmas for explicit construction of functional relations......Page 166
7. Functional relations for ζ3(s;A3)......Page 170
8. Functional relations for ζ2(s;C2)......Page 179
9. Functional relations for ζ3(s;B3) and for ζ3(s;C3)......Page 183
References......Page 195
1.1. The aim of the paper......Page 199
2. Maass forms for SL2(Z)......Page 200
3.1. Fourier expansion of Maass forms......Page 203
3.2. Analytic continuation of Eisenstein series......Page 205
4. Spectral decomposition of non-Euclidean Laplacian......Page 209
5. Hecke’s theory for Maass forms......Page 214
6. The Kuznetsov trace formula......Page 216
7.1. Automorphic L-functions attached to Maass forms......Page 218
8. Maass forms for Γ0(N) and their L-functions......Page 220
8.1. Maass forms for Γ0(N)......Page 221
8.2. Automorphic L-functions for Maass forms for Γ0(N)......Page 222
9.2. A Linnik-type problem for Maass forms......Page 224
9.3. A Linnik-type problem for holomorphic forms......Page 225
9.4. Linnik-type problems for higher rank groups......Page 226
Acknowledgements.......Page 229
References......Page 230
The number of non-zero coefficients of a polynomial-solved and unsolved problems Andrzej Schinzel......Page 232
References......Page 236
1. Introduction......Page 237
2. Notation......Page 238
3.1. Exponential functions......Page 239
3.2. Short character sums......Page 241
3.3. Smooth numbers, S-units and primes......Page 243
3.4. Combinatorial sequences......Page 244
3.5. Polynomial discriminants......Page 246
3.6. Arithmetic functions......Page 247
3.7. Beatty sequences......Page 248
3.8. Sparse polynomials......Page 249
3.9. Nonlinear recurrence sequences......Page 251
Acknowledgements......Page 252
References......Page 253
Errata to “A general modular relation in analytic number theory” Haruo Tsukada......Page 258
References......Page 259
Author Index......Page 266