The pursuit of nuclear fusion as an energy source requires a broad knowledge of several disciplines. These include plasma physics, atomic physics, electromagnetics, materials science, computational modeling, superconducting magnet technology, accelerators, lasers, and health physics. Nuclear Fusion distills and combines these disparate subjects to create a concise and coherent foundation to both fusion science and technology. It examines all aspects of physics and technology underlying the major magnetic and inertial confinement approaches to developing nuclear fusion energy. It further chronicles latest developments in the field, and reflects the multi-faceted nature of fusion research, preparing advanced undergraduate and graduate students in physics and engineering to launch into successful and diverse fusion-related research.
Author(s): Edward Morse
Edition: 1
Publisher: Springer
Year: 2018
Language: English
Pages: 526
Tags: nuclear engineering, nuclear fusion, physics, plasma physics,
Preface......Page 7
Contents......Page 9
About the Textbook......Page 15
About the Author......Page 16
Acronyms......Page 17
1.1 The Promise of Fusion Energy......Page 21
1.2 History of Fusion Research......Page 23
1.2.1 Magnetic Confinement Experiments......Page 24
1.2.2 Inertial Confinement Fusion (ICF)......Page 34
References......Page 39
2.1 Cross Sections and Reactivity......Page 42
2.2 Solar Fusion Reactions......Page 43
2.3 Fusion Reactions for Terrestrial Energy Production......Page 47
2.3.1 catalyzedDDcatalyzed D-D......Page 54
References......Page 55
3.1.1 plasmaoscillationplasma oscillations......Page 57
3.1.2 debyeDebye screening......Page 60
3.2.1 Coulomb Kinematics......Page 62
3.2.2 Momentum and Energy Loss for a Test Particle......Page 67
3.2.3 Energy and Momentum Loss in a Maxwellian Plasma......Page 68
3.2.4 Beam-Plasma Fusion with slowingdownslowing down......Page 71
3.2.5 Runaway Electrons......Page 73
3.3 Collisions in Velocity Space......Page 76
3.4.1 Cyclotron Motion......Page 79
3.4.2 E E E EB B B B Drift......Page 80
3.4.3 Changing Magnetic Field: μ Conservation......Page 81
Another Meaning of μ......Page 83
3.4.5 Curvature Drift......Page 84
3.4.6 The Magnetic Mirror Effect......Page 85
3.4.7 Polarization Drift......Page 88
3.4.9 The Plasma Current......Page 89
Problems......Page 90
References......Page 91
4.1 brembremsstrahlung......Page 93
4.2.1 Basic Concepts......Page 98
4.2.2 Radiation in Optically Thin Plasmas......Page 100
Line Radiation......Page 101
Recombination Radiation......Page 104
Transient Behavior......Page 105
4.2.3 Radiation in Optically Thick Plasmas......Page 108
Radiation Transport in Optically Thick Plasmas......Page 109
Saha Equilibrium......Page 110
nlte Models......Page 111
4.3 Charge Exchange......Page 112
4.4 synchSynchrotron radiation......Page 114
4.5 Energy Balance and the lawsonLawson criterion......Page 115
4.5.1 Advanced Energy Recovery Cycles......Page 118
4.5.2 The Lawson Concept Applied to Inertial Fusion......Page 122
Problems......Page 124
References......Page 125
5.1 Fluid Equations for Plasma: mhdg Model......Page 127
5.1.1 The mhd Limit......Page 129
5.2.2 Static Equilibria......Page 131
5.2.3 A Simple Slab MHD Equilibrium Model......Page 133
5.2.4 The z-Pinch......Page 135
5.3.1 Toroidal and Poloidal Fields......Page 136
5.3.2 Solov'ev Equilibria......Page 138
5.3.3 Solution with Whittaker Functions......Page 139
5.3.4 The Safety Factor q......Page 144
Problems......Page 149
References......Page 150
6.1.1 Linearized Perturbations to Stationary (u0=0) Equilibrium......Page 151
6.1.2 Special Solutions to the Ideal MHD Equation......Page 154
6.2 MHD energyprincipleenergy principle......Page 155
6.2.1 The Intuitive Form of δW......Page 157
6.3 MHD Stability of Tokamaks......Page 159
6.3.1 Internal Kink Mode......Page 161
6.4.1 magreconmagnetic reconnection......Page 164
6.4.2 The tearingresistive tearing mode (m≠1)......Page 168
6.4.3 magneticislandsmagnetic islands......Page 173
6.4.4 Resistive MHD for m=n=1 Mode......Page 175
6.4.6 HugillHugill diagram......Page 178
6.4.7 modelockingmode locking......Page 180
6.4.8 stochasticitymagnetic stochasticity......Page 183
6.5 ntmneoclassical tearing modes......Page 186
6.6 elmEdge localized modes (elms)......Page 188
Problems......Page 191
References......Page 193
7.1 Moments of the Fokker-Planck Equation......Page 195
7.2 Braginskii Transport Coefficients......Page 199
7.3 Gyro-Kinetic Transport......Page 208
7.4 neoclassicalneoclassical transport......Page 210
7.4.1 Orbits and collisionalitycollisionality......Page 212
7.4.2 Pfirsch-Schlter Transport......Page 215
7.4.3 plateauplateau transport......Page 217
7.4.4 bananaBanana regime......Page 220
7.5 Turbulence and Transport......Page 224
7.6 Empirical Scaling Laws......Page 227
Problems......Page 229
References......Page 230
8.1 Introduction and History......Page 232
8.2 MHD Equilibrium......Page 236
8.3 Stability......Page 238
8.4.1 Collisionless Transport, Omnigeneity, and Quasi-Symmetry......Page 242
8.4.2 Neoclassical Transport......Page 244
8.5.1 Density Limit......Page 248
8.5.3 Scaling Laws......Page 249
References......Page 250
9.1.1 Survey of Heating Methods......Page 253
9.2 nbineutral beam injection......Page 255
9.2.1 Neutralization......Page 256
9.2.2 Penetration into Plasma......Page 262
Space Charge and the childlangmuirChild-Langmuir law......Page 265
9.2.4 ITER nbi Design......Page 267
9.3.1 Introduction and History......Page 272
coldplasmacold plasma waves......Page 275
9.3.3 cutoffcutoffs and resonanceresonances......Page 279
9.3.4 Wave-Normal Surfaces......Page 284
9.3.5 Accessibility and the CMA Diagram......Page 286
9.3.6 Ray Tracing......Page 288
9.3.7 bernsteinBernstein waves......Page 290
9.3.8 modeconvmode conversion and tunnelingtunneling......Page 304
9.3.9 RF Heating: Resonant Frequencies in Plasma......Page 307
Engineering of ichcd Systems......Page 311
Lower Hybrid Current Drive......Page 319
Applications of LH H& CD to ITER......Page 323
Sources for LH H& CD......Page 324
Waveguides and Launchers for lhhcd......Page 326
multipactor Effect......Page 328
LH Launching Structures......Page 331
ECH & CD Technology......Page 338
Problems......Page 351
References......Page 353
10.1.1 Differences Between Nuclear Explosive-Driven and Laboratory Fusion Experiments......Page 360
10.2 Direct vs. Indirect Drive......Page 362
10.3 Interaction of Laser Light with Matter......Page 365
10.3.1 invbreminverse bremsstrahlung......Page 367
10.3.2 resabs1resonance absorption......Page 368
10.3.3 Nonlinear Effects: Motion of Electrons in High-Amplitude Electromagnetic Fields......Page 371
10.3.4 Nonlinear Wave Interaction and Parametric Instability......Page 373
10.3.5 Model Equations for Three-Wave Parametric Instability......Page 375
10.3.6 The stokesStokes diagram......Page 376
10.3.7 Stimulated Raman Scattering (srs1)......Page 377
10.3.9 Two-Plasmon Decay......Page 379
10.3.10 Intra-Beam Transfer......Page 380
10.4.1 Hydrodynamic Efficiency: The rocketrocket equation......Page 381
10.5 Hydrodynamic Instabilities......Page 382
10.5.1 rtRayleigh-Taylor instability......Page 383
10.5.2 Kelvin-Helmholtz Instability......Page 384
10.5.3 Richtmeyer-Meshkov Instability......Page 386
10.5.4 Hydrodynamic Mix......Page 389
10.5.5 Shocks......Page 390
10.6.1 fermidegeneracyFermi degeneracy......Page 394
10.6.2 Ion Equations of State: Solid Phase......Page 402
10.6.3 Ion Equation Of State: Fluid Phase......Page 405
10.6.5 Dissociation of Hydrogen Dimers......Page 408
10.6.6 Ionization and Plasma EOS......Page 409
10.6.7 Hugoniots from Equation of State......Page 410
10.6.8 Shock Timing......Page 411
10.6.9 Ignition Strategy for NIF......Page 412
10.7.1 Frequency Doubling and Tripling......Page 414
10.7.2 Deformable Mirrors......Page 415
10.7.3 Plasma Electrode Pockels Cells......Page 416
10.8.1 KrF Lasers......Page 418
10.8.3 Heavy Ion Accelerator Drivers......Page 419
Problems......Page 420
References......Page 422
therthermal stress......Page 428
Coolant Pressure and Stress......Page 429
Stress Due to Plasma Displacements......Page 431
11.1.2 fatiguefatigue......Page 432
11.1.3 fracfracture toughness......Page 433
11.1.4 Radiation Damage: History and Theory......Page 436
11.1.5 Helium Production......Page 443
11.1.6 Material Degradation Due to Radiation Damage......Page 444
11.1.7 embrittlementembrittlement......Page 445
11.1.8 Void Swelling......Page 447
11.1.9 Irradiation Creep......Page 449
Composite Materials......Page 452
11.1.11 Advanced Steels for Fusion Applications......Page 453
11.2 Plasma-Surface Interaction......Page 454
11.2.1 Tungsten Surface Modifications Under Ion Exposure......Page 455
11.3 Tritium Management......Page 456
11.3.1 sievertlawSievert's law and Tritium Permeation......Page 458
FLiBe......Page 460
Lithium-Lead Eutectics......Page 462
11.4 Magnets......Page 463
11.4.1 Superconductivity......Page 464
Radiation Damage in Type II Superconductors......Page 466
More Recent Candidate Superconductors......Page 467
11.4.2 Cryogenic Stability......Page 468
11.4.3 Magnet Stresses......Page 471
11.4.4 Electrical Protection......Page 472
11.5 Vacuum Systems......Page 473
11.5.1 Viscous and Molecular Flow......Page 474
Rough Pumping......Page 480
High-Vacuum Pumping......Page 481
11.6.1 Introduction......Page 483
11.6.2 Design for a DT-Burning Large Tokamak Reactor: ARIES-RS......Page 484
11.6.3 A Simple Non-breeding Blanket Design......Page 486
Problems......Page 487
References......Page 488
12.2 Economics and the Cost of Money......Page 495
12.2.1 Government Funding......Page 496
12.2.2 Corporate Balance Sheet Financing......Page 497
12.2.4 The Mankala Model......Page 500
12.2.6 Export Credit Agencies (ECA) Debt and Financing......Page 501
12.2.8 Some Concluding Remarks on Economic Competitiveness......Page 502
12.3.1 Licensing Process......Page 503
12.3.2 Environmental Effects: Tritium......Page 504
12.3.3 Onsite Plume Model: doe Facilities......Page 506
12.3.4 Environmental Effects of Activated Structural Materials......Page 508
12.4 Safety Considerations......Page 510
Problems......Page 512
References......Page 513
Glossary......Page 515
Index......Page 521