Notes on Digital Signal Processing: Practical Recipes for Design, Analysis and Implementation

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The Most Complete, Modern, and Useful Collection of DSP Recipes: More Than 50 Practical Solutions and More than 30 Summaries of Pertinent Mathematical Concepts for Working Engineers   Notes on Digital Signal Processing is a comprehensive, easy-to-use collection of step-by-step procedures for designing and implementing modern DSP solutions. Leading DSP expert and IEEE Signal Processing Magazine associate editor C. Britton Rorabaugh goes far beyond the basic procedures found in other books while providing the supporting explanations and mathematical materials needed for a deeper understanding.   Rorabaugh covers the full spectrum of challenges working engineers are likely to encounter and delves into crucial DSP nuances discussed nowhere else. Readers will find valuable, tested recipes for working with multiple sampling techniques; Fourier analysis and fast Fourier transforms; window functions; classical spectrum analysis; FIR and IIR filter design; analog prototype filters; z-transform analysis; multirate and statistical signal processing; bandpass and quadrature techniques; and much more.   Notes on Digital Signal Processing begins with mapping diagrams that illuminate the relationships between all topics covered in the book. Many recipes include examples demonstrating actual applications, and most sections rely on widely used MATLAB tools.   DSP fundamentals: ideal, natural, and instantaneous sampling; delta functions; physical signal reconstruction; and moreFourier Analysis: Fourier series and transforms; discrete-time and discrete Fourier transforms; signal truncation; DFT leakage and resolutionFast Fourier transforms: decimation in time and frequency; prime factor algorithms; and fast convolutionWindow techniques: sinusoidal analysis; window characteristics and choices; Kaiser windows; and moreClassical spectrum analysis: unmodified and modified periodograms; Bartlett’s and Welch’s periodograms; and periodogram performanceFIR filters: design options; linear-phase FIR filters; periodicities; basic and Kaiser window methods; and the Parks-McClellan algorithmAnalog prototype filters: Laplace transforms; characterization; and Butterworth, Chebyshev, elliptic, and Bessel filtersz-Transform analysis: computation and transforms using partial fraction expansionIIR filters: design options; impulse invariance methods; and bilinear transformationMultirate signal processing: decimation and interpolation fundamentals; multistage and polyphase decimators and interpolationBandpass and quadrature techniques: bandpass sampling; wedge diagrams; complex and analytic signals; and advanced signal generation techniquesStatistical signal processing: parametric modeling of discrete-time signals; autoregressive signal models; fitting AR and All-Pole models; and more

Author(s): C. Britton Rorabaugh
Edition: 1
Publisher: Prentice Hall
Year: 2010

Language: English
Pages: 278

Contents......Page 8
Preface......Page 12
About the Author......Page 14
Note 1 Navigating the DSP Landscape......Page 16
Note 2 Overview of Sampling Techniques......Page 18
Note 3 Ideal Sampling......Page 20
Note 4 Practical Application of Ideal Sampling......Page 23
Note 5 Delta Functions and the Sampling Theorem......Page 25
Note 6 Natural Sampling......Page 29
Note 7 Instantaneous Sampling......Page 32
Note 8 Reconstructing Physical Signals......Page 35
Note 9 Overview of Fourier Analysis......Page 39
Note 10 Fourier Series......Page 41
Note 11 Fourier Transform......Page 43
Note 12 Discrete-Time Fourier Transform......Page 46
Note 13 Discrete Fourier Transform......Page 48
Note 14 Analyzing Signal Truncation......Page 52
Note 15 Exploring DFT Leakage......Page 55
Note 16 Exploring DFT Resolution......Page 58
Note 17 FFT: Decimation-in-Time Algorithms......Page 63
Note 18 FFT: Decimation-in-Frequency Algorithms......Page 68
Note 19 FFT: Prime Factor Algorithm......Page 70
Note 20 Fast Convolution Using the FFT......Page 73
Note 21 Using Window Functions: Some Fundamental Concepts......Page 76
Note 22 Assessing Window Functions: Sinusoidal Analysis Techniques......Page 80
Note 23 Window Characteristics......Page 84
Note 24 Window Choices......Page 88
Note 25 Kaiser Windows......Page 93
Note 26 Unmodified Periodogram......Page 97
Note 27 Exploring Periodogram Performance: Sinusoids in Additive White Gaussian Noise......Page 99
Note 28 Exploring Periodogram Performance: Modulated Communications Signals......Page 104
Note 29 Modified Periodogram......Page 106
Note 30 Bartlett’s Periodogram......Page 109
Note 31 Welch’s Periodogram......Page 112
Note 32 Designing FIR Filters: Background and Options......Page 116
Note 33 Linear-Phase FIR Filters......Page 121
Note 34 Periodicities in Linear-Phase FIR Responses......Page 125
Note 35 Designing FIR Filters: Basic Window Method......Page 129
Note 36 Designing FIR Filters: Kaiser Window Method......Page 132
Note 37 Designing FIR Filters: Parks-McClellan Algorithm......Page 135
Note 38 Laplace Transform......Page 137
Note 39 Characterizing Analog Filters......Page 139
Note 40 Butterworth Filters......Page 146
Note 41 Chebyshev Filters......Page 151
Note 42 Elliptic Filters......Page 155
Note 43 Bessel Filters......Page 158
Note 44 The z Transform......Page 160
Note 45 Computing the Inverse z Transform Using the Partial Fraction Expansion......Page 164
Note 46 Inverse z Transform via Partial Fraction Expansion Case 1: All Poles Distinct with M < N in System Function......Page 167
Note 47 Inverse z Transform via Partial Fraction Expansion Case 2: All Poles Distinct with M≥N in System Function (Explicit Approach)......Page 170
Note 48 Inverse z Transform via Partial Fraction Expansion Case 3: All Poles Distinct with M≥N in System Function (Implicit Approach)......Page 172
Note 49 Designing IIR Filters: Background and Options......Page 175
Note 50 Designing IIR Filters: Impulse Invariance Method......Page 179
Note 51 Designing IIR Filters: Bilinear Transformation......Page 183
Note 52 Decimation: The Fundamentals......Page 188
Note 53 Multistage Decimators......Page 192
Note 54 Polyphase Decimators......Page 195
Note 55 Interpolation Fundamentals......Page 197
Note 56 Multistage Interpolation......Page 202
Note 57 Polyphase Interpolators......Page 206
Note 58 Sampling Bandpass Signals......Page 208
Note 59 Bandpass Sampling: Wedge Diagrams......Page 211
Note 60 Complex and Analytic Signals......Page 215
Note 61 Generating Analytic Signals with FIR Hilbert Transformers......Page 221
Note 62 Generating Analytic Signals with Frequency-Shifted FIR Lowpass Filters......Page 224
Note 63 IIR Phase-Splitting Networks for Generating Analytic Signals......Page 227
Note 64 Generating Analytic Signals with Complex Equiripple FIR Filters......Page 234
Note 65 Generating I and Q Channels Digitally: Rader’s Approach......Page 237
Note 66 Generating I and Q Channels Digitally: Generalization of Rader’s Approach......Page 241
Note 67 Parametric Modeling of Discrete-Time Signals......Page 246
Note 68 Autoregressive Signal Models......Page 251
Note 69 Fitting AR Models to Stochastic Signals: Yule-Walker Method......Page 253
Note 70 Fitting All-Pole Models to Deterministic Signals: Autocorrelation Method......Page 255
Note 71 Fitting All-Pole Models to Deterministic Signals: Covariance Method......Page 257
Note 72 Autoregressive Processes and Linear Prediction Analysis......Page 260
Note 73 Estimating Coefficients for Autoregressive Models: Burg Algorithm......Page 264
B......Page 268
C......Page 269
D......Page 270
F......Page 271
J-K......Page 272
N......Page 273
Q......Page 274
S......Page 275
W......Page 276
Z......Page 277