Nonequilibrium Molecular Dynamics: Theory, Algorithms and Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Written by two specialists with over twenty-five years of experience in the field, this valuable text presents a wide range of topics within the growing field of nonequilibrium molecular dynamics (NEMD). It introduces theories which are fundamental to the field - namely, nonequilibrium statistical mechanics and nonequilibrium thermodynamics - and provides state-of-the-art algorithms and advice for designing reliable NEMD code, as well as examining applications for both atomic and molecular fluids. It discusses homogenous and inhomogenous flows and pays considerable attention to highly confined fluids, such as nanofluidics. In addition to statistical mechanics and thermodynamics, the book covers the themes of temperature and thermodynamic fluxes and their computation, the theory and algorithms for homogenous shear and elongational flows, response theory and its applications, heat and mass transport algorithms, applications in molecular rheology, highly confined fluids (nanofluidics), the phenomenon of slip and how to compute it from basic microscopic principles, and generalized hydrodynamics.

Author(s): Billy D. Todd, Peter J. Daivis
Publisher: Cambridge University Press
Year: 2017

Language: English
Pages: 371

Contents......Page 5
Preface......Page 10
1 Introduction......Page 12
2.1 Thermodynamics......Page 16
2.2 Continuum Mechanics......Page 18
2.3 Nonequilibrium Thermodynamics......Page 20
2.4 Multicomponent Fluids and Coupled Transport Processes......Page 30
2.5 Spin Angular Momentum......Page 36
3.1 Fundamentals of Classical Mechanics......Page 42
3.2 The Liouville Equation......Page 45
3.3 Time Evolution......Page 46
3.4 Response Theory......Page 49
3.5 Green–Kubo Methods for Linear Transport......Page 62
3.6 Fluctuation Theorems......Page 65
4.1 Temperature......Page 70
4.2 Pressure Tensor and Heat Flux Vector......Page 73
4.3 Method of Planes Techniques for Inhomogeneous Fluids......Page 87
4.4 Volume Averaged Form of the Local Pressure Tensor......Page 102
4.5 Inclusion of Electrostatic Forces......Page 103
5.1 The SLLOD Equations of Motion......Page 115
5.2 Dynamical Maps and the Relationship to Periodic Boundary Conditions......Page 140
5.3 Thermostats......Page 147
5.4 Further Considerations of the SLLOD Equations of Motion......Page 158
6.1 Time-independent Flow......Page 161
6.2 General Homogeneous Flows......Page 174
6.3 Mixed Shear and Planar Elongational Flows......Page 185
6.4 Thermodynamic, Rheological and Structural Results for Simple Fluids under Shear and Extensional Flows......Page 188
6.5 TTCF Algorithms for Shear and Elongational Flows......Page 201
7 Homogeneous Heat and Mass Transport......Page 214
7.1 Single Component Heat Transport......Page 215
7.2 Diffusion......Page 221
7.3 Multicomponent Heat Transport......Page 225
7.4 Evaluation of Thermodynamic Quantities......Page 230
7.5 Heat Transport for Molecular Fluids......Page 234
8.1 Explicit and Coarse-grained Molecular Models......Page 240
8.2 Molecular Representation of the Pressure Tensor......Page 250
8.3 Molecular SLLOD......Page 254
8.4 Momentum and Internal Energy Balance in the Presence of a Homogeneous Thermostat......Page 256
8.5 Molecular Thermostats......Page 258
8.6 Molecular SLLOD Algorithms for Shear Flow......Page 262
8.7 Molecular SLLOD Algorithms for Elongational Flow......Page 264
8.8 Results for Molecular Fluids......Page 265
9 Inhomogeneous Flows for Atomic Fluids......Page 277
9.1 Sinusoidal Transverse Field (STF) Method......Page 278
9.2 Poiseuille Flow......Page 288
9.3 Couette Flow......Page 300
10.1 Molecular Fluids......Page 305
10.2 Spin Coupling, Flow Reduction and Manipulation on the Nanoscale......Page 313
10.3 Binary Mixtures......Page 314
11.1 Generalised Hydrodynamics......Page 317
11.2 Predicting Slip......Page 336
Bibliography......Page 346
Index......Page 366