Cover
Front-matter
ISBN 9783-642414480
Preface
Contents
A Introduction
I Energy level designations
I.1 Vibrational assignment
I.1.1 Normal and local modes
I.1.1.1 Normal modes
I.1.1.2 Local modes
I.1.2 Polyads
I.1.3 Vibrational interactions
I.2 Rotational assignment
I.3 Ortho–para transitions
I.4 MARVEL algorithm
II Energy expressions referred to the ground state
II.1 Vibrational states
II.2 Simple expressions for the fundamental frequencies
III Effective Hamiltonians
III.1 A-reduced Watson-type rotational Hamiltonian
III.2 Coudert Hamiltonian with Radau’s coordinates
III.3 Tyuterev Hamiltonian with Generating Function Model
III.4 Rotational Padé Hamiltonian operator
III.5 Euler expansion of the Hamiltonian
IV Perturbation-theory free Hamiltonians
IV.1 Jensen Morse Oscillator–Rigid Bender Internal Dynamics Hamiltonian
IV.2 Vibrational Hamiltonian expanded in terms of local Morse operators
V Potential energy
V.1 Potential Energy Function (PEF) expanded as a power series
V.2 Spectroscopically determined Potential Energy Surface (PES)
V.2.1 Jensen’s PES determined by variational calculation of rotation-vibration energies withMORBID Hamiltonian
V.2.2 Effective isotope-independent Born–Oppenheimer (B–O) PES with isotope-dependentadiabatic correction
V.2.3 Isotope-dependent PES from high-quality ab-initio analytical potential representation
V.2.4 Semitheoretical PES by morphing ab-initio potential
V.2.5 Correction to the ab-initio PES expression from [2000Kai] for the determination of thebarrier height
V.2.6 Force constants
VI Dipole moment function
VI.1 One example of a Taylor series expansion form of the DMF
VI.2 DMF expression in [97Cou]
VI.3 Analytical expression of the Dipole Moment Surface in [97Par]
VI.4 Dipole matrix elements in the DMS expansion used in [2005Tot2]
VI.5 Transition moment for the bending-rotation Coudert Hamiltonian approach
VII Intensities
VII.1 Line intensity
VII.2 Band intensity
VII.3 Temperature dependence of the absorption
VII.4 Internal partition function
VIII Line shape
VIII.1 Line profiles
VIII.1.1 Lorentz profile
VIII.1.2 Doppler profile
VIII.1.3 Voigt profile
VIII.2 Collision-broadening
VIII.2.1 Self-broadening
VIII.2.2 Foreign gas broadening
VIII.2.3 Temperature dependence of the line broadening coefficients
VIII.3 Family of H2O lines
IX Conversion tables
IX.1 Conversion table for energy-related units and selected fundamental constants
IX.2 Intensity units and conversion table
X List of symbols
References
XI Survey
XI.1 Coupling constants
XI.2 Dipole moments
XI.3 Force constants
XI.4 Harmonic frequencies
XI.5 Line positions with line intensity unit
XI.6 Line positions with relative line intensities
XI.7 Line positions
XI.8 Line shape related parameters
XI.9 Morphing function
XI.10 Partition function
XI.11 Potential
XI.12 Rovibrational energy levels
XI.13 Spectroscopic parameters
XI.14 Structure
XI.15 Vibrational band intensities
XI.16 Vibrational band origins
Reference
XII Detailed survey of some tables
B Data
1 H2O(HOH) cont.
1.4 D216O(D16OD)
Table 1. D216O(D16OD): Molecular constants for the ground state.
References
Table 2. D216O(D16OD): Molecular constants for the ground state.
Reference
Table 3. D216O(D16OD): Molecular constants for the ground state.
Reference
Table 4. D216O(D16OD): Effective and equilibrium ground state rotational constants.
References
Table 5. D216O(D16OD): Molecular parameters for the ground state.
Reference
Table 6. D216O(D16OD): Fitted parameters of the effective Hamiltonian of the (000) and the (010)vibrational states.
Reference
Table 7. D216O(D16OD): Rotational and rovibrational parameters for the (000) and (010) states.
Reference
Table 8. D216O(D16OD): Rotational constants for the (010) vibrational state.
References
Table 9. D216O(D16OD): Molecular constants for the 010 state.
References
Table 10. D216O(D16OD): Spectroscopic constants of the effective vibrational Hamiltonian.
Reference
Table 11. D216O(D16OD): Molecular parameters for the (020), (100), and the (001) states.
Reference
Table 12. D216O(D16OD): Fermi and Coriolis coupling constants for the triad {(020), (100), (001)}.
Reference
Table 13. D216O(D16OD): Fitted parameters of the effective Hamiltonian for the triad {(020), (100),(001)}.
Reference
Table 14. D216O(D16OD): Resonance interaction parameters for the triad {(020), (100), (001)}.
Reference
Table 15. D216O(D16OD): Spectroscopic constants for the (030) vibrational state.
References
Table 16. D216O(D16OD): Spectroscopic parameters for the second triad {(030), (110), (011)} of interacting vibrational states.
Reference
Table 17. D216O(D16OD): Fermi and Coriolis coupling constants for the second triad {(030), (110), (011)} of interacting vibrational states triad.
Reference
Table 18. D216O(D16OD): Spectroscopic parameters for the first hexad{(200), (002), (120), (040), (101), (021)} of interacting vibrational states.
References
Table 19. D216O(D16OD): Fermi, Coriolis, and Darling-Dennison coupling constants for the first hexad {(200), (002), (120), (040), (101), (021)} of interacting vibrational states.
References
Table 20. D216O(D16OD): Spectroscopic parameters for the (031), (111), (130), (210), and (012) interacting vibrational states of the second hexad.
Reference
Table 21. D216O(D16OD): Fermi, Coriolis, and Darling-Dennison coupling constants for the (031), (111), (130), (210), and (012) interacting vibrational states of the second hexad.
Reference
Table 22. D216O(D16OD): Spectroscopic parameters for the (003), (201), (121), (041), (102), (300), (022), (220), and (140) interacting vibrational states belonging to the first decade.
References
Table 23. D216O(D16OD): Fermi coupling constants for the (003), (201), (121), (041), (102), (300), (022), (220), and (140) interacting vibrational states belonging to the first decade
Reference
Table 24. D216O(D16OD): Coriolis coupling constants for the (003), (201), (121), (041), (102), (300), (022), (220), and (140) interacting vibrational states belonging to the first decade.
Reference
Table 25. D216O(D16OD): Spectroscopic parameters for the (310), (211), (112), (013), (230), (131), and (032) interacting vibrational states belonging to the second decade.
References
Table 26. D216O(D16OD): Fermi, Coriolis, and Darling-Dennison coupling constants for the (310), (211), (112), (013), (230), (131), and (032) interacting vibrational states belonging to the second decade.
References
Table 27. D216O(D16OD): Spectroscopic parameters for the (400), (301), (202), (221), (122), and (023) interacting vibrational states belonging to the n = 4 polyad.
References
Table 28. D216O(D16OD): Fermi and Coriolis coupling constants for the (400), (301), (202), (221), (122), and (023) interacting vibrational states belonging to the n = 4 polyad.
Reference
Table 29. D216O(D16OD): Spectroscopic parameters for the (401), (302), (321), (420), (142), and (043) interacting vibrational states belonging to the n = 5 polyad.
Reference
Table 30. D216O(D16OD): Fermi and Coriolis coupling constants for the (401), (302), (321), (420), (142), and (043) interacting vibrational states belonging to the n = 5 polyad.
Reference
Table 31. D216O(D16OD): Fit coefficients cijk of the morphing function.
References
Table 32. D216O(D16OD): Fitted PES parameters.
References
Table 33. D216O(D16OD): Force constants of the PES CVRQD calculated at its minimum.
Reference
Table 34. D216O(D16OD): Force constants for the electronic ground state.
References
Table 35. D216O(D16OD): Normal coordinate force constants derived from the CCSDT-1 PES.
References
Table 36. D216O(D16OD): Average value of the dipole moment in the ground state.
Reference
Table 37. D216O(D16OD): Dipole moment expansion coefficients for the (010)–(000) band.
Reference
Table 38. D216O(D16OD): Dipole moment expansion coefficients for the (010)–(000) vibrational band.
Reference
Table 39. D216O(D16OD): Dipole moment expansion coefficients for the (020)–(010), (100)–(010), and(001)–(010) vibrational bands.
Reference
Table 40. D216O(D16OD): Internal partition function.
References
Table 41. D216O(D16OD): Measured frequencies within the vibrational ground state (000), in the range0.36 – 35.53 cm-1.
References
Table 42. D216O(D16OD): Measured frequencies within the vibrational ground state (000), in the range0.36 – 171.62 cm-1.
Reference
Table 43. D216O(D16OD):Observed line frequencies for the (000)–(000) transitions from 0.3 to91 cm-1.
Reference
Table 44. D216O(D16OD): Measured frequencies within the vibrational ground state (010), in the range0.99 – 21.41 cm-1.
References
Table 45. D216O(D16OD): Observed line frequencies for the (010)–(010) transitions from 2.6 to64 cm-1.
Reference
Table 46. D216O(D16OD): Wavenumbers for the (000)–(000) transitions from 24 to 220 cm-1.
Reference
Table 47. D216O(D16OD): Measured rotational frequencies within the vibrational states (000), (001),(010), (012), (020), (031), (100), (111), (121), (130), and (210).
References
Table 48. D216O(D16OD): Measured rovibrational frequencies in the vibrational bands (001) ← (020),(100) ← (020), (031) ← (130), (111) ← (012), and (111) ← (210).
References
Table 49. D216O(D16OD): Wavenumbers for the (000)–(000) transitions from 110 to 413 cm-1.
References
Table 50. D216O(D16OD): Wavenumbers for the (000)–(000) transitions from 321 to 825 cm-1.
Reference
Table 51. D216O(D16OD): Wavenumbers for the (010)–(010) transitions from 321 to 788 cm-1.
Reference
Table 52. D216O(D16OD): Wavenumbers for the (020)–(010) transitions from 623 to 848 cm-1.
Reference
Table 53. D216O(D16OD): Wavenumbers for the (010)–(000) transitions from 667 to 860 cm-1.
Reference
Table 54. D216O(D16OD): Wavenumbers and intensities for the (100)–(010) transitions from 736 to 1246 cm-1.
Reference
Table 55. D216O(D16OD): Wavenumbers and intensities for the (020)–(010) transitions from 864 to 1460 cm-1.
Reference
Table 56. D216O(D16OD): Wavenumbers for the (010)–(000) transitions from 894 to 1658 cm-1.
References
Table 57. D216O(D16OD): Line shape parameters for (020)–(010) transitions in the range 998–1220 cm-1.
Reference
Table 58. D216O(D16OD): Line shape parameters for (010)–(000) transitions in the range 998–1023 cm-1.
Reference
Table 59. D216O(D16OD): Line shape parameters for (010)–(000) transitions in the range 1017–1428 cm-1.
Reference
Table 60. D216O(D16OD): Experimental wavenumbers and intensities for the (010)–(000) transitions from 1039 to 1585 cm-1.
References
Table 61.D216O(D16OD): Absolute line intensities for (010)–(000) transitions from 1073 to 1272 cm-1.
Reference
Table 62. D216O(D16OD): Wavenumbers and intensities for the (110)–(100) transitions from 1204 to 1465 cm-1.
Reference
Table 63. D216O(D16OD): Wavenumbers and intensities for the (100)–(010) transitions from 1234 to 1670 cm-1.
Reference
Table 64. D216O(D16OD): Wavenumbers and intensities for the (010)–(000) transitions from 1245 to 1490 cm-1.
Reference
Table 65. D216O(D16OD): Line shape parameters for (010)–(000) transitions in the range 1256–1322 cm-1.
Reference
Table 66. D216O(D16OD): Wavenumbers and intensities for the (001)–(010) transitions from 1481 to 1731 cm-1.
Reference
Table 67. D216O(D16OD): Wavenumbers for the (001)–(010) transitions from 1751 to 2030 cm-1.
Reference
Table 68. D216O(D16OD): Wavenumbers for the (100)–(010) transitions from 1752 to 1960 cm-1.
Reference
Table 69. D216O(D16OD): Wavenumbers for the (020)–(000) transitions from 1988 to 3103 cm-1.
Reference
Table 70. D216O(D16OD): Wavenumbers for the (100)–(000) transitions from 2001 to 3139 cm-1.
Reference
Table 71. D216O(D16OD): Wavenumbers for the (001)–(000) transitions from 2030 to 3058 cm-1.
Reference
Table 72. D216O(D16OD): Wavenumbers and intensities for the (030)–(010) transitions from 2081 to 2999 cm-1.
Reference
Table 73. D216O(D16OD): Wavenumbers and intensities for the (020)–(000) transitions from 2146 to 3043 cm-1.
Reference
Table 74. D216O(D16OD): Wavenumbers and intensities for the (100)–(000) transitions from 2336 to 3030 cm-1.
Reference
Table 75. D216O(D16OD): Wavenumbers and intensities for the (110)–(010) transitions from 2388 to 2983 cm-1.
Reference
Table 76. D216O(D16OD): Wavenumbers and intensities for the (001)–(000) transitions from 2473 to 2995 cm-1.
Reference
Table 77. D216O(D16OD): Wavenumbers and intensities for the (011)–(010) transitions from 2475 to 3005 cm-1.
Reference
Table 78. D216O(D16OD): Line shape parameters for (001)–(000) transitions in the range 2657–2725 cm-1.
Reference
Table 79. D216O(D16OD): Experimental wavenumbers and intensities for the (030)–(000) transitions from 3311 to 3641 cm-1.
References
Table 80. D216O(D16OD): Wavenumbers and intensities for the (021)–(010) transitions from 3633 to 4144 cm-1.
Reference
Table 81. D216O(D16OD): Wavenumbers and intensities for the (011)–(000) transitions from 3644 to 4161 cm-1.
Reference
Table 82. D216O(D16OD): Wavenumbers and intensities for the (110)–(000) transitions from 3715 to 4172 cm-1.
Reference
Table 83. D216O(D16OD): Dipole moment parameters for the (030)–(000) vibrational band.
References
Table 84. D216O(D16OD): Calculated N2- and O2-broadened halfwidths for (000)–(000) transitions.
References
Table 85. D26O(D16OD): Statistical comparison between calculated N2- and O2-broadened halfwidths of H2 16O and D2 16O.
References
Table 86. D216O(D16OD): Predicted vibrational band origins.
References
Table 87. D216O(D16OD): Vibrational band origins.
References
Table 88. D216O(D16OD): Calculated vibrational band origins for 162 vibrational transitions.
Reference
Table 89. D216O(D16OD): Experimental and calculated vibrational band origins.
Reference
Table 90. D216O(D16OD): Experimental vibrational band origins.
References
Table 91. D216O(D16OD): Calculated relative dipole oscillator intensity for 19 vibrational transitions.
Reference
Table 92. D216O(D16OD): Band intensity for ν1, ν2, and ν3 vibrational transitions.
References
Table 93. D216O(D16OD): Calculated band intensity for eleven vibrational transitions.
Reference
Table 94. D216O(D16OD): Band intensities for 11 vibrational transitions.
Reference
Table 95. D216O(D16OD): Band intensity for eight vibrational transitions.
References
1.5 D217O(D17OD)
Table 96. D217O(D17OD): Molecular parameters for the (000) level.
References
Table 97. D217O(D17OD): Dipole moment expansion coefficients for the (010)–(000) band.
Reference
Table 98. D217O(D17OD): Rotational energy levels for the (000) and (010) vibrational states.
Reference
Table 99. D217O(D17OD): Wavenumbers and intensities for the (010)–(000) transitions from 995 to 1389 cm-1.
Reference
Table 100. D217O(D17OD): Wavenumbers and intensities for the (111)–(000) transitions from 6380 to 6646 cm-1.
Reference
Table 101. D217O(D17OD): Wavenumbers and intensities for the (210)–(000) transitions from 6404 to 6587 cm-1.
Reference
Table 102. D217O(D17OD): Predicted vibrational band origins.
Reference
Table 103. D217O(D17OD): Vibrational band origin.
Reference
Table 104. D218O(D18OD): Molecular constants for the ground state.
References
1.6 D218O(D18OD)
Table 105. D218O(D18OD): Molecular constants for the (000) and (010) states.
Reference
Table 106. D218O(D18OD): Fitted parameters of the effective Hamiltonian of the (000) and the (010) vibrational states.
Reference
Table 107. D218O(D18OD): Molecular parameters for the (001), (100), and (020) states.
Reference
Table 108. D218O(D18OD): Fermi and Coriolis coupling constants for the (100), (020), and (001) interacting vibrational states.
Reference
Table 109. D218O(D18OD): Dipole moment expansion coefficients for the (010)–(000) band.
Reference
Table 110. D218O(D18OD): Dipole moment expansion coefficients for the (010)–(000) band.
Reference
Table 111. D218O(D18OD): Wavenumbers and intensities for the (000)–(000) transitions from 22.3 to 286 cm-1.
References
Table 112. D218O(D18OD): Wavenumbers and intensities for the (010)–(010) transitions from 39 to 259 cm-1.
References
Table 113. D218O(D18OD): Wavenumbers and intensities for the (010)–(000) transitions from 953 to 1454 cm-1.
Reference
Table 114. D218O(D18OD): Line shape parameters for (010)–(000) transitions in the range 989–1242 cm-1.
Reference
Table 115. D218O(D18OD): Experimental wavenumbers and intensities for the (030)–(010) transitions from 2137 to 2582 cm-1.
References
Table 116. D218O(D18OD): Experimental wavenumbers and intensities for the (020)–(000) transitions from 2196 to 2583 cm-1.
References
Table 117. D218O(D18OD): Experimental wavenumbers and intensities for the (110)–(010) transitions from 2407 to 2987 cm-1.
References
Table 118. D218O(D18OD): Experimental wavenumbers and intensities for the (100)–(000) transitions from 2442 to 2880 cm-1.
References
Table 119. D218O(D18OD): Wavenumbers and intensities for the (001)–(000) transitions from 2594 to 2917 cm-1.
Reference
Table 120. D218O(D18OD): Experimental wavenumbers and intensities for the (011)–(010) transitions from 2628 to 2868 cm-1.
References
Table 121. D218O(D18OD): Experimental wavenumbers and intensities for the (001)–(000) transitions from 2630 to 2878 cm-1.
References
Table 122. D218O(D18OD): Wavenumbers and intensities for the (130)–(000) transitions from 6003 to 6625 cm-1.
Reference
Table 123. D218O(D18OD): Wavenumbers and intensities for the (031)–(000) transitions from 6044 to 6627 cm-1.
Reference
Table 124. D218O(D18OD): Wavenumbers and intensities for the (111)–(000) transitions from 6328 to 6638 cm-1.
Reference
Table 125. D218O(D18OD): Wavenumbers and intensities for the (012)–(000) transitions from 6329 to 6806 cm-1.
Reference
Table 126. D218O(D18OD): Wavenumbers and intensities for the (121)–(010) transitions from 6340 to 6557 cm-1.
Reference
Table 127. D218O(D18OD): Wavenumbers and intensities for the (220)–(010) transitions from 6344 to 6565 cm-1.
Reference
Table 128. D218O(D18OD): Wavenumbers and intensities for the (210)–(000) transitions from 6356 to 6629 cm-1.
Reference
Table 129. D218O(D18OD): Predicted vibrational band origins.
References
Table 130. D218O(D18OD): Predicted vibrational band origins.
Reference
Table 131. D218O(D18OD): Vibrational band origins.
References
1.7 T216O(T16OT)
Table 133. T216O(T16OT): Molecular constants for the (010)–(000) vibrational band.
Reference
Table 134. T216O(T16OT): Molecular constants for the (001)–(000) vibrational band.
Reference
Table 135. T216O(T16OT): Spectroscopic parameters of the effective vibrational Hamiltonian.
Reference
Table 136. T216O(T16OT): Calculated spectroscopic constants from all-electron QCISD(T) potentialwithin the VPT2 approximation.
Reference
Table 137. T216O(T16OT): Experimental and calculated frequencies from 0.04 to 20 cm-1 within the(000) ground state.
References
Table 138. T216O(T16OT): Experimental wavenumbers for the (010)–(000) transitions from 818 to 1219cm-1.
Reference
Table 139. T216O(T16OT): Experimental wavenumbers for the (001)–(000) transitions from 2280 to2443 cm-1.
Reference
Table 140. T216O(T16OT): Band intensity for ν1, ν2, and ν3 vibrational transitions.
References
Table 141. T216O(T16OT): Band intensity for ν1, ν2, and ν3 vibrational transitions.
References
Table 132. T216O(T16OT): Molecular constants for the ground state with structural parameters.
References
1.8 T218O (T18OT)
Table 142. T218O(T18OT): Spectroscopic constants for the (010)–(000) vibrational transition.
References
Table 143. T218O(T18OT): Experimental and calculated wavenumbers for the (010)–(000) transitionsfrom 862 to 1094 cm-1.
Reference