Non-Archimedean L-Functions of Siegel and Hilbert Modular Forms

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The main subject of the book is the arithmetic of zeta functions of automorphic forms. More precisely, it looks at p-adic properties of the special values of these functions. For the Riemann-zeta function this goes back to the classical Kummer congruences for Bernoulli numbers and their p-adic analytic continuation of the standard zeta functions of Siegel and modular forms and of the convolutions of Hilbert modular forms. The book is addressed to specialists in representation theory, functional analysis and algebraic geometry. Together with new results, it provides considerable background information on p-adic measures, their Mellin transforms, Siegel and Hilbert modular forms, Hecke operators acting on them, and Euler products.

Author(s): Panchishkin A.A.
Year: 1991

Language: English
Pages: 160