Next-Generation Solar Cells: Principles and Materials

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Building a sustainable energy system is one of the great challenges of our time that has prompted both academia and industry to seek alternative energy and renewable energy solutions. Recently, advanced materials and technologies for next-generation solar cells have been exploited to develop economically viable, high-performance solar cells. This book addresses the principles and materials for the development of next-generation solar cells for a sustainable global society. It reviews the structures, working principles, and limitations of solar cells as well as the improvement methods of their power-conversion efficiency. It introduces generations of cells as photovoltaic devices, including third-generation solar cells such as organic solar cells, quantum dots solar cells, and organic-inorganic hybrid solar cells. It focuses on the emerging perovskite solar cells (PSCs) and deals with their cell configuration, transport materials, and fabrication processes in detail.

Author(s): Yoon-Bong Hahn, Tahmineh Mahmoudi, Yousheng Wang
Publisher: Jenny Stanford Publishing
Year: 2023

Language: English
Pages: 327
City: Singapore

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
Chapter 1: Electromagnetic Radiation
1.1: Light and Photon
1.2: Photometry
1.3: Blackbody Radiation
1.4: Planck’s Radiation Law
1.5: Solar Spectrum
Chapter 2: Physics and Properties of Semiconductors
2.1: Atomic Structure of Semiconductor
2.2: Carrier Concentration
2.3: Doping
2.4: Drift and Mobility
2.5: Diffusion
2.6: Recombination
2.7: p-n Junction
2.8: Optical Properties
2.8.1: Absorption: Direct-Bandgap and Indirect-Bandgap Transitions
2.8.2: Luminescence Emission
2.8.3: Quantum Efficiency
Chapter 3: Working Principles and Limitations of Solar Cells
3.1: Basic Structure and Working Principle of Solar Cells
3.1.1: Basic Structure of Solar Cells
3.1.2: Solar Cell Working Principles
3.2: Limitations and Improvements of Energy Conversion in Solar Cells
3.2.1: Efficiency Limitation Factors in Solar Cells
3.2.1.1: Energy bandgap
3.2.1.2: Interface defects
3.3: Maximum Efficiency of Solar Cells
3.4: Improvement of the Efficiency of Solar Cells
3.4.1: Tandem Solar Cells
3.4.2: Concentrator Solar Cells
3.4.3: Up- and Down-Conversion of Photons
3.5: Photovoltaic Generations
Chapter 4: Generations of Solar Cells
4.1: First Generation: Solar Cells Based on Silicon Wafers
4.1.1: Basic Material
4.1.2: Crystalline Silicon Solar Cell
4.1.2.1: Monocrystalline silicon solar cell
4.1.2.2: Polycrystalline silicon solar cell
4.1.3: Solar Cell Performance
4.1.4: Cell Fabrication Technology
4.1.4.1: Wafer check
4.1.4.2: Texturing
4.1.4.3: Diffusion
4.1.4.4: Edge isolation
4.1.4.5: Anti-reflection coating
4.1.4.6: Contact printing
4.1.4.7: Testing and sorting
4.2: Second Generation: Thin-Film Solar Cells
4.2.1: Materials
4.2.2: Si-Based Thin-Film Solar Cells
4.2.3: Chalcopyrite-Based Solar Cells
4.2.4: Cadmium Telluride (CdTe) Solar Cells
4.3: Third Generation: Organic, Quantum Dot, Organometallic Solar Cells
4.3.1: Organic Solar Cells
4.3.2: Quantum Dot Solar Cell
4.3.2.1: Quantum dots
4.3.2.2: Quantum confinement effect
4.3.2.3: QD-sensitized solar cells
4.3.3: Organic–Inorganic Hybrid Solar Cells
4.3.3.1: Dye-sensitized solar cells
4.3.3.2: Perovskite solar cells
Chapter 5: Organic Solar Cells
5.1: Organic Semiconductors
5.2: Basic Operation Principles and Physical Mechanism
5.2.1: Absorption and Exciton
5.2.2: Diffusion and Dissociation
5.3: Organic Solar Cell Configurations
5.3.1: Planar Solar Cells
5.3.2: Bulk Heterojunction Solar Cells
5.3.3: Polymer Solar Cells
5.3.4: All-Polymer Solar Cells
5.3.5: Ternary Polymer Solar Cells
5.3.6: Organic Tandem Solar Cells
5.4: Charge Dynamics in Polymer Solar Cells
5.4.1: Charge Dynamics Measurements
5.4.1.1: Transient absorption spectroscopy
5.4.1.2: Transient photovoltage and photocurrent
5.4.2: Exciton Dissociation and Charge Generation
5.4.3: Charge Recombination
5.5: Dye-Sensitized Solar Cells
5.5.1: Structure of DSSC
5.5.1.1: Transparent conductive oxide (TCO) substrate
5.5.1.2: Working electrode
5.5.1.3: Dye (or photosensitizer)
5.5.1.4: Electrolyte
5.5.1.5: Counter electrode (CE)
5.5.2: Operating Principles of DSSC
5.5.3: Performance of DSSC
5.5.4: Limitations of DSSCs
Chapter 6: Quantum Dot Solar Cells
6.1: Physical Properties of Quantum Dot
6.1.1: What Are Quantum Dots?
6.1.2: Synthesis of Quantum Dots
6.1.3: Optical and Electronic Properties of Quantum Dots
6.1.4: Application of Quantum Dots
6.2: Quantum Dots Based Solar Cells
6.2.1: Quantum Dots Solar Cell Configuration
6.2.2: Basic Operation Principles and Physical Mechanism
6.3: Quantum Dot/Semiconductor Heterojunction Solar Cells
6.3.1: Schottky Junction Solar Cells
6.3.2: Depleted Planar Heterostructure Quantum Dot Solar Cells
6.3.3: Depleted Bulk Heterojunction Quantum Dot Solar Cells
6.4: Quantum Dots Sensitized Solar Cells
6.4.1: Structure and Working Principles of QDSSC
6.4.2: Components of QDSSC
6.4.2.1: Photoanode
6.4.2.2: QD sensitizers
6.4.2.3: Redox electrolytes
6.4.3: Suppression of recombination in QDSSCs
Chapter 7: Organic–Inorganic Hybrid Solar Cells
7.1: Graphene-Based Hybrid Solar Cells
7.2: Polymer–Quantum Dot Hybrid Solar Cells
7.2.1: Material Aspects
7.2.2: Hybrid Bulk Heterojunction Solar Cells with Large Bandgap Nanocrystals
7.2.3: Hybrid Bulk Heterojunction Solar Cells with Low-Bandgap Nanocrystals
7.2.4: Limiting Factors of Polymer–QD Hybrid Solar Cells
7.2.5: Interfacial Engineering in Polymer–QD Hybrid Solar Cells
7.3: Charge-Transport Materials for Hybrid Solar Cells
7.3.1: Metal Oxide–Based Charge-Transport Materials
7.3.1.1: Electron-transport materials
7.3.1.2: Hole-transport materials
7.3.2: Graphene-Based Charge-Transport Materials
7.3.2.1: Tuning of the work function of graphene
7.3.2.2: Electron-transport materials
7.3.2.3: Hole-transport materials
Chapter 8: Perovskite Solar Cells
8.1: What Are Perovskites and Their Properties?
8.1.1: Organic–Inorganic Hybrid Perovskites
8.1.2: Low-Dimensional Perovskites
8.1.3: All-Inorganic Perovskites
8.2: Perovskite Composition Engineering
8.2.1: A-Site Doping
8.2.2: B-Site Doping
8.2.3: X-Site Doping
8.3: History of Perovskite Solar Cell
8.4: Basic Working Principles
Chapter 9: Structures, Transport Materials, and Deposition Methods for Perovskite Solar Cells
9.1: Perovskite Solar Cell Configurations
9.1.1: n-i-p Structure
9.1.2: p-i-n Structure
9.1.3: Hole-Conductor Free Perovskite Solar Cells
9.1.4: Flexible Perovskite Solar Cells
9.2: Transport Materials for Perovskite Solar Cells
9.2.1: Electron-Transport Materials
9.2.1.1: Organic materials
9.2.1.2: Inorganic materials
9.2.2: Hole-Transport Materials
9.2.2.1: Organic materials
9.2.2.2: Inorganic materials
9.3: Deposition Methods for Perovskite Solar Cells Fabrication
9.3.1: Spin-Coating Deposition
9.3.2: Vapor-Assisted Deposition
9.3.3: Printing Deposition
Chapter 10: Defects and Ions Migration in Perovskite Solar Cells
10.1: Nature of Defects
10.2: Defects and Charge-Transport Processes
10.3: Formation of Intrinsic Defects
10.4: Light Soaking and Trap Filling
10.5: Extrinsic Defects
10.6: Techniques to the Probe Defect States
10.7: Ions Migration
10.8: Ions Migration in Operating Solar Cell
Chapter 11: Quantum Dots, Tandem, and Lead-Free Perovskite Solar Cells
11.1: Perovskite Quantum Dots Solar Cells
11.1.1: From Perovskite Thin Films to Quantum Dots
11.1.2: Crystal Structure and Properties of Perovskite QDs
11.1.3: Emerging of Perovskite QDSCs
11.1.4: Methods of Enhancing the Device Performance of PQDSCs
11.2: Perovskite Tandem Solar Cells
11.2.1: Working Principles of Tandem Solar Cells
11.2.2: Perovskite Tandem Solar Cells
11.2.2.1: Bandgap dependency of perovskite
11.2.2.2: Perovskite/Si tandem solar cells
11.2.2.3: Perovskite/chalcogenide thin-film tandem solar cells
11.2.2.4: All-perovskite tandem solar cells
11.3: Lead-Free Perovskite Solar Cells
11.3.1: Limitations of Pb-Based Perovskite Materials
11.3.2: Tin-Based Perovskites
11.3.3: Germanium-Based Perovskites
11.3.4: Antimony- and Bismuth-Based Perovskites
11.3.5: Halide Double Perovskites
Chapter 12: Composites-Based Efficient and Stable Perovskite Solar Cells with Interface Engineering
12.1: Organic Materials–Based Perovskite Composites
12.1.1: Small-Molecule-Based Perovskite Composites
12.1.2: Polymer-Based Perovskite Composites
12.1.3: Ammonium-Based Perovskite Composites
12.1.4: Low-Dimensional/Three-Dimensional Perovskite Composites
12.2: Inorganic Material–Based Perovskite Composites
12.2.1: Metal Oxide–Based Perovskite Composites
12.2.2: Carbon-Based Perovskite Composites
12.2.3: Semitransparent PSCs with Metal Oxide–Based Composites
12.2.4: Other Inorganic Halides–Based Perovskite Composites
12.3: Stability Enhancement with Interface Engineering
12.3.1: Why Is Interface Engineering Needed?
12.3.2: Interface Engineering at TCO/ETL Interface
12.3.3: Interface Engineering at ETL/AL Interface
12.3.4: Interface Engineering at AL/HTL Interface
12.3.5: Interface Engineering at HTL/Electrode Interface
12.3.6: Interface Engineering at Multi-Interface Locations
12.4: Composite-Based Charge-Transport Materials
12.4.1: Composite-Based Electron-Transport Layer
12.4.2: Composite-Based Hole-Transport Layer
Chapter 13: Characterization of Solar Cell Materials and Devices
13.1: Spectroscopic Techniques
13.2: Chemical Analysis
13.2.1: Fourier Transform Infrared (FTIR) Spectroscopy
13.2.2: X-ray Photoelectron Spectroscopy (XPS)
13.2.3: Energy-Dispersive X-ray Spectroscopy
13.3: Physical Analysis
13.3.1: Raman Spectroscopy
13.3.2: Photoluminescence (PL) Spectroscopy
13.3.3: UV–Vis Absorption Spectroscopy
13.3.4: Ultraviolet Photoelectron Spectroscopy (UPS)
13.4: Structural Analysis
13.4.1: X-ray Diffraction Analysis
13.4.2: Electron Microscopy
13.4.2.1: Transmission electron microscope (TEM)
13.4.2.2: Scanning electron microscope (SEM)
13.4.3: Atomic Force Microscopy (AFM)
13.5: Characterization of Photovoltaic Parameters
13.5.1: Current–Voltage Analysis
13.5.2: Incident Photon-to-Current Conversion Efficiency Analysis
13.5.3: Impedance Spectroscopy
13.5.4: Space-Charge-Limited Current
Index