Next Generation Smart Grids: Modeling, Control and Optimization

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book is a collection of chapters describing the advanced and future aspects of smart grid technology. The book emphasizes technical issues, theoretical background and practical applications that drive postgraduates, researchers and practicing engineers with the right advanced skills, vision and knowledge who will further be capable of leading in teams involved in the modelling, control, design, and optimization of the future smart grids. This feature strengthens the benefits of the book for the readers who will gain an insightful understanding of future smart grid challenges including: (i) the formulation of decision-making models, (ii) the familiarization with efficient solution algorithms for such models and (iii) insights into these problems through the detailed analysis of numerous illustrative examples. Further the chapters in this book provide comprehensive coverage of modelling, control and optimization of smart grid which are quite different from most technical publications.

 

Author(s): Surender Reddy Salkuti, Papia Ray
Series: Lecture Notes in Electrical Engineering, 824
Publisher: Springer
Year: 2022

Language: English
Pages: 456
City: Singapore

Preface
Contents
Editors and Contributors
Overview of Next Generation Smart Grids
1 Introduction
2 Smart Grids: Advantages, Barriers, and Opportunities
2.1 Advantages and Barriers of Smart Grids
2.2 Challenges
3 Technologies Required for the Smart Grid Development
3.1 Sensing and Measurement Technologies
3.2 Communication Technologies
3.3 Smart Meters and Advanced Metering Infrastructure (AMI)
4 Renewable Energy and Energy Storage
4.1 Renewable Energy
4.2 Energy Storage
5 Big Data, Machine Learning, and Blockchain Technology in Smart Grids
5.1 Big Data
5.2 Machine Learning (ML)
5.3 Blockchain Technology
6 Electric Vehicles (EVs)
6.1 Battery Electric Vehicles (BEVs)
6.2 Hybrid Electric Vehicles (HEVs)
6.3 Plug-In Hybrid Electric Vehicles (PHEVs)
7 Protection of Smart Grid
8 Conclusion
References
Modeling of Various Renewable Energy Resources for Smart Electrical Power Systems
1 Introduction
2 Wind Energy System
2.1 Modeling of Wind Turbines (WTs)
2.2 Modeling of Wind Speed
2.3 Modeling of Wind Power Output
3 Solar PV Energy System
3.1 Modeling of Power Output from Solar PV Plant
3.2 Uncertainty Modeling of Solar PV Unit
4 Battery Storage Modeling
5 Small Hydro and Pumped Hydro Energy Systems
5.1 Modeling of Small Hydro Power
5.2 Modeling of Pumped Hydro Storage Plant
6 Geothermal Energy
6.1 Modeling of Geothermal Energy
7 Biomass Energy
7.1 Modeling of Biomass Energy
8 Conclusions
References
Smart Grid Communication: Recent Trends and Challenges
1 Introduction
2 Architecture of SG
2.1 Bulk Generation
2.2 Transmission Domain
2.3 Distribution Domain
2.4 Customer Domain
2.5 Market Domain
2.6 Service Provider Domain
2.7 Operation Domain
3 Wired and Wireless Technology for Smart Grid Communication
3.1 Wired Communication Technology
3.2 Wireless Communication in Smart Grid
4 Smart Grid Standards
5 Challenges in Smart Gird Communication
5.1 Active Control Challenges
5.2 Cyber-Security
5.3 Data-Loss Problem and Mitigation Techniques
6 Conclusion
References
Comparison of Selected MPPT Techniques Using Different Performance Features
1 Introduction
2 Different Parameters Related to SECS
3 Working Principle of Solar Energy Conversion System
4 MPPT Techniques
4.1 Perturb and Observe
4.2 Incremental Conductance
4.3 Temperature Control
5 Implementation of Heuristic Approaches of the MPPT Technique
6 Results and Discussion
6.1 Voltage and Voltage Ripples in Varying Atmospheric Conditions
6.2 Power and Power Ripples in Varying Atmospheric Conditions
6.3 Current and Current Ripples in Varying Atmospheric Conditions
6.4 Tracking Performance and Efficiency
7 Conclusion
References
Short Term Active Power Load Forecasting Using Machine Learning with Feature Selection
1 Introduction
2 Methodology
2.1 ANN Topology Design
2.2 Dimentionality Reduction—Correlation
2.3 Stochastic Gradient Descent Optimizer
3 Result Analysis
3.1 Data Analysis
3.2 Lightweight ANN Model Performance
3.3 Comparative Analysis
4 Conclusions
References
Evaluation of Algorithms for Fundamental and Harmonic Impacts of Integration of Renewable Energy Sources in Smart Power Distribution Networks
1 Introduction
2 Modeling of Network Components
2.1 Renewable DG
3 Methodology for Developing BUSNUM and BRANCNUM Matrices
4 Fundamental Power Flow Algorithm for SPDN
5 Integration of Renewable DGs into FPFA of SPDN
6 HPFA for SPDN with Integration of Renewable DGs and Presence of Non-linear Loads
7 Case Studies and Discussions on IEEE-13 Bus Feeder
7.1 Case Study 1: Fundamental Power Flow Solution
7.2 Case Study 2: Harmonic Power Flow Solution
7.3 Case Study 3: Harmonic Power Flow Solution with Multiple Integrations of Renewable DGs
7.4 Discussions
8 Case Studies and Discussions on IEEE-34 Bus Feeder
9 Conclusion
References
A Comprehensive Review of Active Islanding Detection Methods and Islanding Assessment in a Grid Connected Solar Based Microgrid
1 Introduction
2 Certain Challenges with Islanding
3 Indices / Parameters of Islanding Detection Methods
3.1 Non Detection Zone (NDZ)
3.2 Detection Time
3.3 Power Quality
3.4 Error Detection Ratio
4 Islanding Detection Methods
4.1 Active Islanding Detection Methods
4.2 Hybrid Islanding Detection Methods
5 Comparison of IDMs
6 System Architecture of a Grid Connected Solar Based DG
7 Results and Discussion
7.1 Case 1: Local Load is Equal to Local Generation
7.2 Case 2: Local Load Exceeds Local Generation
8 Conclusion
References
A Comparative Analysis of PI and Predictive Control Strategy for HESS Based Bi-directional DC-DC Converter for DC Microgrid Applications
1 Introduction
2 Modelling of PV Panel
2.1 P&O MPPT Algorithm
3 Two-Input Bidirectional DC-DC Converter (TIBC) Operation
3.1 HESS Discharging Mode
3.2 HESS Charging Mode
3.3 HESS Energy Exchange Mode
3.4 Mode Transitions
3.5 Mathematical Design Calculations of Filter Parameters
4 Small Signal Linear Averaged Model of 2-Input Bidirectional Converter for PI Controller Design
4.1 Small Signal Linear Averaged Model of Supercapacitor-DC Microgrid Stage
4.2 Small Signal Linear Averaged Model of Battery-DC Micro Grid Stage
5 Control Scheme Using Model Predictive Controller
5.1 Outer Voltage Control Loop
5.2 Inner Current Control
6 Supercapacitor State-of-Charge Controller
7 Simulation Study and Discussion
7.1 Step Change in PV Generation Using PI Control Scheme
7.2 Step Change in Load Demand Using PI Control Scheme
7.3 Step Change in PV Generation Using MPC
7.4 Step Change in Load Demand Using MPC
7.5 Comparative Performance Evaluation
8 Experimental Results
8.1 Step Variation of DC Grid Reference Voltage
8.2 Step Variation of PV Generation
8.3 Step Variation of Load
8.4 Energy Exchange Mode
9 Conclusion
References
Parameters Estimation of Solar PV Using Jaya Optimization Technique
1 Introduction
2 Mathematical Modeling of PV Model
3 Problem Formulation
3.1 Evaluation of Fitness Function
4 Particle Swarm Optimization
4.1 PSO Algorithm Parameters
5 Jaya Algorithm
5.1 Evaluation of the Best Solution Candidate and the Worst Solution Candidate Phase
5.2 Updation Phase
5.3 Comparison Phase
6 Algorithm for Estimation of Solar PV Parameters
6.1 Algorithm for Estimation of Solar PV Parameters Using Jaya Algorithm
6.2 Algorithm for Estimation of Solar PV Parameters Using Particle Swarm Optimization
6.3 Flowchart for PV Parameters Estimation
7 Results and Analysis
8 Conclusion
References
Integration of Photovoltaic Distributed Generation into Grid
1 Introduction
2 Non-conventional Energy Sources
2.1 Tidal Energy Source
2.2 Wind Energy Source
2.3 Wave Energy Source
2.4 Geo Thermal Energy Source
2.5 Hydro Power
2.6 Photovoltaic Power
2.7 Types of PV Cells
3 DC-DC Converters
3.1 Isolated Converters
3.2 Non- Isolated Converters
4 Solar Energy
4.1 MPPT Algorithm
4.2 PV Cell Modeling
4.3 Characteristics of PV Cell
5 Inverters
5.1 Based on Output
5.2 Based on Source
5.3 Based on Load
5.4 Based on Technique
5.5 Based on Level
6 Filters
6.1 Based on Response
6.2 Based on Their Construction
7 Simulation Results
8 Conclusion
References
Transient Stability Enhancement of Power System with Grid Connected DFIG Based Wind Turbine
1 Introduction
2 Modeling of Doubly Fed Induction Generator (DFIG)
2.1 Mathematical Modeling of DFIG
2.2 Implementation of Wind Turbine Integrated Models for TS Analysis Using PSAT Software
3 Reliability Test System (RTS) 24 Bus Test System
4 Results and Discussion
4.1 Transient Stability Enhancement of DFIG Integrated RTS 24 Bus System
5 Conclusions
References
Design and Analysis of BLDC Motor Driver for Hybrid Electric Vehicles
1 Introduction
1.1 Related Work
1.2 Motivation and Contributions
2 Battery Storage System
3 DC-DC Converter
3.1 Voltage Source Inverter (VSI)
3.2 Pulse Width Modulation (PWM)
3.3 Voltage Source Converters (VSC)
4 Results and Discussion
5 Conclusions
References
A Novel Approach for Power Quality Improvement in Microgrid
1 Introduction
2 Power Quality Improvement by Developing PV-DSTATCOM
2.1 Power System Model
2.2 Grid Design and Its THD with PV-DSTATCOM
2.3 System Topology and Control Architecture
3 Power Quality Improvement by Developing Dynamic Voltage Restorer (DVR)
3.1 Circuit Model of DVR
3.2 Proposed Technique
4 Results and Discussion
4.1 Improvement of Power Quality by Developing PV-DSTATCOM
4.2 Improvement of Power Quality by Developing DVR
5 Conclusions
References
Characterization of Bifacial Passivated Emitter and Rear Contact Solar Cell
1 Introduction
1.1 Methodology
1.2 Bifacial PERC
1.3 Algorithm
2 Characterization of PERC
3 Results
4 Conclusion
References
Network Reconfiguration of Distribution System with Distributed Generation, Shunt Capacitors and Electric Vehicle Charging Stations
1 Introduction
1.1 Related Work
1.2 Scope and Contributions
2 Distribution Load Flow (DLF) Analysis
3 Modeling of Shunt Capacitor and EVCS in the Distribution System
3.1 Modeling of Shunt Capacitor
3.2 Modeling of EVCS in the Distribution System
4 Problem Formulation
4.1 Fuzzy Membership Function for Active Power Loss Reduction (µLi)
4.2 Fuzzy Membership Function for Maximum Node Voltage Deviation (µVi)
4.3 Constraints
4.4 Selection of Best-Compromised Solution
5 Solution Methodology
6 Results and Discussion
6.1 Case 1: Tie-Line Switch Operation 1
6.2 Case 2: Tie-Line Switch Operation 2
6.3 Case 3: Tie-Line Switch Operation 3
6.4 Case 4: Tie-Line Switch Operation 4
7 Conclusions
References
Role of Advanced Control Technologies in the Evolution of Smart
1 Introduction
2 Generalized Definition of Smart Grids
3 Evolution of Smart Grids
4 Challenges in Implementation of Smart Grids
4.1 Technical Challenges
4.2 Environmental Challenges
5 Control Issues in Implementation of Smart Grids
5.1 Reinforcement of the Grid
5.2 Improvement in Intelligence
5.3 Betterment in Communications
5.4 Participation of Intermittent Sources
5.5 Offshore Movement
5.6 Capturing the Benefits of Back-Up Devices
5.7 Plug-In Hybrid Vehicles Usage
5.8 Advanced Technologies Implementation
6 Digital Control of Smart Grids
7 Adaptive Control Technologies for Smart Grid
7.1 Advanced Metering Infrastructure (AMI)
7.2 Phasor Measurement Unit (PMUs)
7.3 Distributed Weather Sensing
7.4 Wide Area Measurement System (WAMS)
8 Adaptive Control Technologies for Smart Grid
8.1 Integrated Communications
8.2 Secure Web Mechanism
8.3 Wireless Sensor System
8.4 Communication Infrastructure
9 Some Commercially Available Smart Grid Technologies
10 Conclusion
References
Application of Solar Energy as Distributed Generation for Real Power Loss Reduction in Radial Distribution Network
1 Introduction
2 Effect of External Parameters on Solar Radiation
2.1 Irradiance Astronomical Model
2.2 Obstructed Solar Astronomical Model
2.3 PV Cell Temperature Model
2.4 Panel Size and Location
2.5 Shadowing Effect in Solar Panels
2.6 Stochastic Modelling of Solar Irradiance
3 Load Modelling Profile
4 Problem Formulation
5 Optimization Technique
5.1 Mathematical Model of GWO
6 Test System Under Study
6.1 IEEE-15 Bus System
6.2 IEEE-28 Bus System
7 Result and Discussion
7.1 Real Power Loss Minimization
7.2 Bus Voltage Improvement
7.3 Optimum DG Location and Capacity
8 Conclusion
References
Author Index
Subject Index