Nanotechnology is considered an unlimited discipline inasmuch as it is considered as a mother technology by means of a reductionist approach. Nanotechnology is regarded as a fundamental technology that could ground all the technologies in a similar fashion to the unified theory of physics. Nevertheless, nanotechnology definition, in terms of the system size, which should be less than 1000 nanometres, is not related to the properties of objects or application areas. This confers Nanotechnology with a semantic vagueness that has been profited by several research groups to obtain financial funds inasmuch as nanocosmos has turned out to be a new frontier for scientific research. It is not about building a new world, atom by atom, but of miniaturizing the mesocosmic world to a nanometric scale. Having this in mind, it is necessary to integrate physics, chemistry and molecular biology, notwithstanding are open fields which avoids attaining the goal of a unified theory. Hence, Nanotechnology is heavily grounded in frontier sciences and uses instruments developed for natural sciences investigations. Nanotechnology has continuously evolved sharing with past technologies the same approaches to science policy, therefore, it is problematic to consider nanotechnology as a radical change in the development of technology.
Author(s): Armando Barranon
Edition: 1
Year: 2009
Language: English
Pages: 219
NEW NANOTECHNOLOGY DEVELOPMENTS......Page 5
CONTENTS......Page 7
FOREWORD......Page 9
INTRODUCTION......Page 11
THE SYSTEM......Page 12
MOLECULAR DYNAMICS METHOD......Page 13
SIMULATION DETAILS......Page 15
RESULTS......Page 16
CONCLUSIONS......Page 17
REFERENCES......Page 18
1. INTRODUCTION......Page 19
1.2.1. Economic Aspect......Page 20
1.2.3. The Role of Educators and Nanoscientists......Page 21
2. PROPOSAL......Page 22
3. CONCLUSIONS......Page 23
REFERENCES......Page 24
ABSTRACT......Page 27
REFERENCES......Page 37
RESUMES OF THE AUTHORS......Page 38
ABSTRACT......Page 41
1. NANOTECHNOLOGY AND THE QUESTION OF DEVELOPMENT......Page 42
2. WORLD BANK MILLENNIUM PROJECTS AND NANOTECHNOLOGY IN LATIN AMERICA......Page 43
3. SUSTAINABILITY OF THE CENTRES OF EXCELLENCE AS CRUCIBLES FOR DEVELOPMENT......Page 46
REFERENCES......Page 47
RESUMEN......Page 51
THEORY......Page 52
EXPERIMENTAL SETUP......Page 53
RESULTS AND DISCUSSION......Page 55
REFERENCES......Page 57
1. INTRODUCTION......Page 59
2. THEORETICAL BASIS......Page 60
3. RESULTS OBTAINED......Page 63
4. CONCLUSIONS......Page 65
REFERENCES......Page 66
INTRODUCTION......Page 67
THEORY......Page 68
CONCLUSION......Page 69
REFERENCES......Page 70
ABSTRACT......Page 71
1. INTRODUCTION......Page 72
2. A. Synthesis of Pt Nanoparticles......Page 73
2. B. Synthesis of Bimetal Pt-Au Nanoparticles......Page 74
3. RESULTS AND DISCUSSION......Page 75
4. CONCLUSIONS......Page 76
REFERENCES......Page 77
ABSTRACT......Page 79
INTRODUCTION......Page 80
Arsenic and Chromium Adsorption Isotherms......Page 81
Scanning Electron Microscopy......Page 82
Surface Area and Pore Volume......Page 83
X-Ray Diffraction......Page 84
Diffuse Reflectance Infrared Spectroscopy......Page 85
Adsorption of Chromium/Arsenic......Page 86
CONCLUSIONS......Page 87
REFERENCES......Page 88
ABSTRACT......Page 89
LAWSON TEST......Page 90
FLUIDS......Page 92
SCHOOL ACTIVITY (VID. APPENDIX)......Page 93
LAWSON TEST GLOBAL RESULTS......Page 95
ACTIVITIES GLOBAL RESULTS......Page 96
APPENDIX: ACTIVITY FOR THIRD YEAR SECONDARY SCHOOL STUDENTS......Page 99
REFERENCES......Page 100
ABSTRACT......Page 103
INTRODUCTION......Page 104
MANUFACTURING PROCESS......Page 106
EQUIPMENT......Page 107
EXPERIMENTAL DESIGN......Page 109
ADMINISTERING DRUGS THROUGH THE MUCOSAL BARRIER......Page 110
ACKNOWLEDGEMENTS......Page 111
REFERENCES......Page 112
ABSTRACT......Page 113
2. THEORY......Page 114
3. RESULTS......Page 115
4. CONCLUSIONS......Page 116
REFERENCES......Page 117
1. INTRODUCTION......Page 119
2. GENERAL DESCRIPTION OF THE NUMERICAL SCHEME......Page 121
2.1. Bound States......Page 122
2.2. Extended States......Page 123
2.3. VIRTUAL STATES......Page 124
REFERENCES......Page 125
INTRODUCTION......Page 127
METHODOLOGY......Page 128
RESULTS......Page 129
REFERENCES......Page 131
APPENDIX......Page 132
ABSTRACT......Page 135
1. INTRODUCTION......Page 136
2. PHYSICAL MODEL OF THE OPTICAL TWEEZERS......Page 137
3. A FEEDBACK CONTROL STRATEGY......Page 138
3.1. Solving the control of a tracking problem......Page 139
4. SIMULATIONS RESULTS......Page 141
ACKNOWLEDGMENTS......Page 143
6. APPENDIX......Page 144
REFERENCES......Page 145
ABSTRACT......Page 147
INTRODUCTION......Page 148
X-ray diffraction analysis......Page 149
SURFACE AREA......Page 151
CATALYTIC ACTIVITY......Page 152
ACKNOWLEDGMENTS......Page 153
REFERENCES......Page 154
1. INTRODUCTION......Page 155
2. SYNTHESIS METHODS......Page 156
2.1. Nanosphere Lithography Method......Page 157
2.2. Photoinduced Method......Page 158
2.3. Templating Method......Page 160
2.4. Solvothermal Reduction Method......Page 162
2.5. Hydrothermal Reduction Method......Page 163
3.1.1. Stacking Faults Mechanism......Page 165
3.1.2. Photoinduced Fusion Mechanism......Page 167
3.1.3. Surface Selective Adsorption Mechanism......Page 168
DFT Simulation.......Page 169
MD Simulation.......Page 170
4. FUNCTIONAL PROPERTIES AND APPLICATIONS......Page 171
4.1.2 Numerical Simulations......Page 172
4.2.1 Surface Enhanced Raman Spectroscopy......Page 176
4.2.2 Localized Surface Plasmon Resonance......Page 177
4.2.3 Sensing Detection of Inorganic Ions......Page 178
4.3.1 Stability......Page 183
4.3.2 Chemical Reactivity......Page 184
5. SUMMARY......Page 187
REFERENCES......Page 188
1. INTRODUCTION......Page 193
1.2. Other Ferrites......Page 194
2.1. Synthesis of Nanoparticles......Page 195
2.2. Thin Film Growth......Page 196
3.1. Magnetic and Electrical Properties......Page 197
3.3. Mossbauer Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS)......Page 201
REFERENCES......Page 202
INDEX......Page 205