Neutrality and Many-Valued Logics

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

In this book, we consider various many-valued logics: standard, linear, hyperbolic, parabolic, non-Archimedean, p-adic, interval, neutrosophic, etc. We survey also results which show the tree different proof-theoretic frameworks for many-valued logics, e.g. frameworks of the following deductive calculi: Hilbert's style, sequent, and hypersequent. Recall that hypersequents are a natural generalization of Gentzen's style sequents that was introduced independently by Avron and Pottinger. In particular, we consider Hilbert's style, sequent, and hypersequent calculi for infinite-valued logics based on the three fundamental continuous t-norms: Lukasiewicz's, G?¶del s, and Product logics. We present a general way that allows to construct systematically analytic calculi for a large family of non-Archimedean many-valued logics: hyperrational-valued, hyperreal-valued, and p-adic valued logics characterized by a special format of semantics with an appropriate rejection of Archimedes' axiom. These logics are built as different extensions of standard many-valued logics (namely, Lukasiewicz's, G?¶del s, Product, and Post's logics). The informal sense of Archimedes' axiom is that anything can be measured by a ruler. Also logical multiple-validity without Archimedes' axiom consists in that the set of truth values is infinite and it is not well-founded and well-ordered. We consider two cases of non-Archimedean multi-valued logics: the first with many-validity in the interval [0,1] of hypernumbers and the second with many-validity in the ring of p-adic integers. Notice that in the second case we set discrete infinite-valued logics. The following logics are investigated: 1. hyperrational valued Lukasiewicz's, G?¶del s, and Product logics, 2. hyperreal valued Lukasiewicz's, G?¶del s, and Product logics, 3. p-adic valued Lukasiewicz's, G?¶del s, and Post's logics. Hajek proposes basic fuzzy logic BL which has validity in all logics based on continuous t-norms. In this book, for the first time we survey hypervalued and p-adic valued extensions of basic fuzzy logic BL. On the base of non-Archimedean valued logics, we construct non-Archimedean valued interval neutrosophic logic INL by which we can describe neutrality phenomena. This logic is obtained by adding to the truth valuation a truth triple t, i, f instead of one truth value t, where t is a truth-degree, i is an indeterminacy-degree, and f is a falsity-degree. Each parameter of this triple runs either the unit interval [0,1] of hypernumbers or the ring of p-adic integers.

Author(s): Andrew Schumann, Florentin Smarandache
Year: 2007

Language: English
Pages: 119