Synthesizing current information about sensory-motor plasticity, this book provides an up to date description of the dynamic processes that occur in somatic sensory-motor cortical circuits or somatic sensory pathways to the cortex due to experience, learning, or damage to the nervous system. The author emphasizes changes in the cortex that are linked to changes in movement or behavior and shows the potential for direct brain-based interventions to improve the quality of life for people with sensory-motor disabilities. He includes studies that document the dynamic changes in system properties that occur with normal experience or recovery from brain damage.
Author(s): Ford F. Ebner
Series: Frontiers in Neuroscience
Edition: 1
Publisher: CRC Press
Year: 2004
Language: English
Pages: 310
Front cover......Page 1
Preface......Page 9
Editor......Page 15
Contributors......Page 17
Contents......Page 19
Silent Neurons in Sensorimotor Cortices: Implications for Cortical Plasticity......Page 21
I. Evidence for a Predominance of Silent Cortical Neurons in Sensorimotor Cortices......Page 22
2. Results from Sharp Microelectrode Recordings......Page 23
4. Results from Whole-Cell Recordings in the Vibrissae Barrel Cortices of Awake Animals......Page 24
6. Results from Derivatives of the Whole-Cell Recordings Technique......Page 26
1. Experimental Agreement on the Amplitude of Subthreshold Signals......Page 27
3. An Attempt to Quantitatively Determine the Synaptic Composition of a Cortical Sensory Response Suggests Very Low Presynaptic Activity......Page 28
2. Small Numbers of APs in Single Cells of the Primary Motor Cortex Can Evoke Movements......Page 30
2. Contribution of Silent Cells to Learning and Cortical Plasticity......Page 32
C. Silent Neurons and Synaptic Learning Rules......Page 33
III. Conclusion......Page 35
References......Page 36
The Vibrissa Resonance Hypothesis......Page 41
I. Overview......Page 42
A. The Behavioral Relevance of High Frequency Somatosensory Perception......Page 43
B. Sensory Capabilities of the Vibrissa Sensory System......Page 44
1. Resonance and Frequency Encoding in Other Sensory Systems......Page 45
2. The Vibrissa Resonance Hypothesis......Page 47
A. Vibrissa Resonance......Page 48
1. Sinusoidal Stimuli......Page 50
C. Somatotopic Frequency Mapping and Isofrequency Columns......Page 53
2. Velocity Sensitivity: Impact on the Representation of Specific Frequency Bands......Page 58
E. Higher Harmonics: Implications for the Vibrissa Resonance Hypothesis......Page 59
A. Modulation of Whisking Velocity......Page 61
A. Dynamic Evolution of Vibrissa Resonance Tuning: ‘Contact’ vs. Frequency Coding During Different Epochs of the Response......Page 62
1. Vibrissa Resonance and Trigeminal Temporal Coding......Page 63
2. Vibrissa Resonance and the Volley Principle......Page 67
3. Vibrissa Resonance and SI Temporal Coding......Page 70
C. Vibrissa Resonance and Intrinsic Neural Frequency Tuning......Page 71
VI. Summary and Human Implications......Page 74
Acknowledgments......Page 75
References......Page 76
A. Summary......Page 81
B. Rat Vibrissal Sensory Pathway as a General Model......Page 82
A. Modular Learning in the Rat Whisker System......Page 83
B. Modular Learning in the Human Tactile System......Page 85
C. Physiological Account for Modular Learning......Page 86
D. Population Coding in Rat Barrel Cortex......Page 87
E. Decoding the Activity of Rat Barrel Cortex Populations......Page 88
F. Concluding Observations Concerning Spatial Plasticity Rules......Page 89
A. Fluctuations in Cortical Excitability......Page 90
B Timing-Based Plasticity of Intracortical Connections......Page 91
D. Possible Mechanisms for Rapid Fluctuations in Plasticity......Page 94
E. Locus of Modification......Page 95
References......Page 96
II. Introduction......Page 99
III. Psychophysics in the Flutter Discrimination Task......Page 100
IV. Neural Coding of Vibrotactile Stimuli in S1......Page 103
V. Neuronal Correlates of Flutter Discrimination in S1......Page 106
VI. Artificial Induction of Activity in S1 Underlying Flutter Discrimination......Page 109
VII. General Comments......Page 112
References......Page 114
I. Overview......Page 117
C. Transfer between Locations......Page 118
III. Tactile Superiority in the Blind: A Manifestation of Perceptual Learning?......Page 121
IV. Inter-Manual Referral of Tactile Sensation......Page 123
References......Page 124
The Effects of Sensory Deprivation on Sensory Function of SI Barrel Cortex......Page 129
B. Introduction......Page 130
2. Critical or Sensitive Periods......Page 131
4. Complete (Global) vs. Restricted (Partial) Deprivation......Page 132
5. Timing: When is the Sensory Deprivation Imposed?......Page 133
7. Controls: What is a Valid Control for Sensory Deprivation?......Page 134
1. Development of Normal Cortical Response Properties......Page 135
2. Ascending and Recurrent Circuits......Page 137
3. Intracortical Circuits......Page 138
1. In Vivo Analysis of Global Sensory Deprivation during Development......Page 139
3. Anatomical Changes Produced by Global Sensory Deprivation......Page 142
4. Partial Sensory Deprivation During Postnatal Development......Page 143
5. Comparison of Partial with Global Sensory Deprivation......Page 145
6. Effects of Sensory Deprivation on the Adult Brain......Page 146
F. Molecular Mechanisms Affected by Sensory Deprivation......Page 147
1. Effects of Sensory Deprivation on Excitatory Neurotransmission......Page 148
2. Effects of Sensory Deprivation on Inhibitory Neurotransmission......Page 149
References......Page 150
Role of Plasticity in Sensorimotor Transformations......Page 159
A. Task Analyses......Page 160
B. Devising Task Analyses Based on Current Understandings of Neural Processing......Page 161
A. Non-Hierarchical Views of Sensorimotor Processing......Page 162
III. Principle II: Information from Multiple Spatial Scales is Processed Simultaneously......Page 164
IV. Principle III: Laboratory Animals are Constantly Evaluating Information Across Multiple Time Scales in Order to More Accurately Predict What Will Happen in Their World......Page 165
A. Parallel Processing At Multiple Time Scales......Page 166
V. Principle IV: Action Potentials are not the Only Causal Neural Activity, with Ramifications for Behavior......Page 168
A. Motor Organization in Terms of Survival- Related Behaviors......Page 169
B. Sensorimotor Learning According to this View......Page 170
References......Page 171
I. Introduction......Page 175
A. Environmental Enrichment and Plasticity......Page 176
B. Motor Learning......Page 178
A. The Concept of Spontaneous Recovery......Page 184
B. Reorganization of M1 Associated with Spontaneous Recovery After an Ischemic Infarct......Page 186
C. Directed Reorganization of Injury-Induced Plasticity in Motor Cortex......Page 190
D. Neuromodulation of Cortical Activity......Page 194
References......Page 197
I. Introduction......Page 209
II. Motor Cortex Reorganization after Amputations, Nerve Injury, and Spinal Cord Damage in Mature and Developing Rats......Page 210
III. Motor System Plasticity after Cortical Lesions in Rats......Page 213
IV. Motor Cortex Reorganization after the Loss of a Limb in Mature and Developing Primates......Page 214
V. Do New Connections Contribute To Motor Cortex Reorganization?......Page 217
VI. Reorganization after Focal Lesions of Motor Cortex in Monkeys......Page 218
VII. Motor Cortex Reorganization in Humans......Page 219
IX. Summary and Conclusions......Page 220
References......Page 222
Abbreviations......Page 227
A. Chronic Limb Deafferentation......Page 228
1. Effects on Contralateral Cortical Function......Page 230
2. Effects on Ipsilateral Cortical Function......Page 231
C. Somatosensory Stimulation......Page 234
III. Effects of Cortical Stimulation on Motor Cortical Function and Cortical Plasticity......Page 235
Acknowledgments......Page 237
References......Page 238
I. Abstract......Page 247
II. Introduction......Page 248
A. Focal Hand Dystonia (FHd)......Page 249
C. Primate Studies......Page 251
D. Rodent Animal Models......Page 258
E. Summary of Animal Studies......Page 259
1. Experiment I: Relationship of Clinical Performance and Neural Structure......Page 260
2. Experiment II: Intervention (12 Subjects)......Page 267
3. Experiment III: Three Case Studies......Page 270
III. Summary of Intervention Strategies......Page 272
References......Page 273
References for Measurement Documents......Page 281
c......Page 283
f......Page 284
i......Page 285
m......Page 286
n......Page 287
p......Page 288
r......Page 289
s......Page 290
v......Page 292
z......Page 293
Color Figures......Page 295