Wireless sensor networks promise an unprecedented fine-grained interface between the virtual and physical worlds. They are one of the most rapidly developing new information technologies, with applications in a wide range of fields including industrial process control, security and surveillance, environmental sensing, and structural health monitoring. This book is motivated by the urgent need to provide a comprehensive and organized survey of the field. Ideal for researchers and designers seeking to create new algorithms and protocols, and engineers implementing integrated solutions, it also contains many exercises and can be used by graduate students taking courses in Networks.
Author(s): Bhaskar Krishnamachari
Year: 2006
Language: English
Pages: 214
Half-title......Page 2
Title......Page 4
Copyright......Page 5
Dedication......Page 6
Contents......Page 8
Preface......Page 12
1.1 Wireless sensor networks: the vision......Page 14
1.2 Networked wireless sensor devices......Page 15
1.3 Applications of wireless sensor networks......Page 17
1.4 Key design challenges......Page 19
1.5 Organization......Page 22
2.1 Overview......Page 23
2.2 Structured versus randomized deployment......Page 24
2.3.3 Two-tier hierarchical cluster......Page 25
2.4.1 Connectivity in G(n, R)......Page 27
2.4.4 Connectivity and coverage in Ggrid (n,p,R)......Page 30
2.5 Connectivity using power control......Page 31
2.5.2 Minimum common power setting (COMPOW)......Page 32
2.5.4 Cone-based topology control (CBTC)......Page 33
Definition 1......Page 35
Theorem 3......Page 36
2.6.2 Path observation......Page 37
2.7 Mobile deployment......Page 39
2.8 Summary......Page 40
Exercises......Page 41
3.1 Overview......Page 44
3.2 Key issues......Page 45
3.4.1 Binary proximity......Page 47
3.4.3 Geometric constraints......Page 48
3.4.5 Identifying codes......Page 50
3.5.2 Distance-estimation using time differences (TDoA)......Page 52
3.5.3 Triangulation using distance estimates......Page 53
3.5.5 Pattern matching (RADAR)......Page 55
3.6.1 Issues......Page 56
3.6.2 Constraint-based approaches......Page 57
3.6.4 Iterative multilateration......Page 58
3.6.5 Collaborative multilateration......Page 59
3.6.6 Multi-hop distance-estimation approaches......Page 60
3.6.9 Multi-dimensional scaling......Page 61
3.6.10 Reference-less localization......Page 62
3.7.1 Cramér–Rao lower bound......Page 64
Theorem 6......Page 65
3.8 Summary......Page 66
Exercises......Page 67
4.1 Overview......Page 70
4.2 Key issues......Page 71
4.3 Traditional approaches......Page 73
4.4.1 Reference broadcast synchronization (RBS)......Page 74
4.4.2 Pair-wise sender–receiver synchronization (TPSN)......Page 76
4.4.3 Linear parameter-based synchronization......Page 77
4.4.4 Flooding time synchronization protocol (FTSP)......Page 78
4.4.5 Predictive time synchronization......Page 79
4.5 Coarse-grained data synchronization......Page 80
Exercises......Page 81
5.2 Wireless link quality......Page 83
5.2.1 Empirical observations......Page 84
5.2.3 Radio reception model......Page 86
5.2.4 The transitional region......Page 87
5.3 Radio energy considerations......Page 90
5.4 The SINR capture model for interference......Page 91
5.5 Summary......Page 92
Exercises......Page 93
6.2 Traditional MAC protocols......Page 95
6.2.2 Hidden and exposed node problems......Page 96
6.2.4 IEEE 802.11 MAC......Page 97
6.2.5 IEEE 802.15.4 MAC......Page 98
6.3.2 Power aware medium-access with signalling (PAMAS)......Page 99
6.4.1 Secondary wake-up radio......Page 100
6.4.3 WiseMAC......Page 101
6.4.4 Transmitter/receiver-initiated cycle receptions (TICER/RICER)......Page 102
6.4.5 Reconfigurable MAC protocol (B-MAC)......Page 103
6.5.1 Sensor MAC (S-MAC)......Page 104
6.5.2 Timeout MAC (T-MAC)......Page 105
6.5.3 Data-gathering MAC (D-MAC)......Page 106
Problem 1......Page 107
Theorem 7......Page 108
6.6 Contention-free protocols......Page 109
6.6.2 BFS/DFS-based scheduling......Page 110
6.6.3 Reservation-based synchronized MAC (ReSync)......Page 111
6.6.4 Traffic-adaptive medium access (TRAMA)......Page 112
6.7 Summary......Page 113
Exercises......Page 114
7.1 Overview......Page 116
7.2.2 Geographic adaptive fidelity (GAF)......Page 118
7.2.3 Adaptive self-configuring sensor network topology control (ASCENT)......Page 120
7.2.4 Neighborhood coordinators (SPAN)......Page 121
7.3.1 Probing environment and adaptive sleep (PEAS)......Page 122
7.3.2 Sponsored sector......Page 124
7.3.4 Lightweight deployment-aware scheduling (LDAS)......Page 125
Problem 3......Page 126
7.5 Cross-layer issues......Page 127
Exercises......Page 129
8.2 Metric-based approaches......Page 132
8.2.1 The ETX metric......Page 133
8.2.2 Metrics for energy–reliability tradeoffs (MOR/MER)......Page 134
8.3.1 Relay diversity......Page 135
8.3.2 Extremely opportunistic routing (ExOR)......Page 136
8.4.1 Braided multi-path routing......Page 138
8.4.3 Gradient Broadcast routing (GRAB)......Page 139
8.5.2 Lifetime-maximizing routing......Page 141
8.5.4 Flow optimization formulations......Page 142
8.6 Geographic routing......Page 143
8.6.2 Perimeter routing (GFG/GPSR)......Page 144
8.6.4 Geographical energy-aware routing (GEAR)......Page 145
8.7.1 Two-tier data dissemination (TTDD)......Page 146
8.7.2 Asynchronous dissemination to mobile sinks (SEAD)......Page 147
8.7.4 Learning enforced time domain routing......Page 148
8.8 Summary......Page 149
Exercises......Page 150
9.1 Overview......Page 152
9.2.1 Directed diffusion......Page 153
9.2.2 Pull versus push diffusion......Page 155
9.3.1 LEACH......Page 156
9.3.4 Network correlated data-gathering......Page 157
9.3.6 Scale-free aggregation......Page 158
9.3.7 Impact of spatial correlations on routing with compression......Page 159
9.4 Querying......Page 160
9.4.1 Expanding ring search......Page 161
9.4.2 Information-driven sensor query routing (IDSQ)......Page 162
9.4.4 Trajectory-based forwarding (TBF)......Page 163
9.4.5 Active query forwarding (ACQUIRE)......Page 164
9.4.6 Rumor routing......Page 166
9.4.7 The comb-needle technique......Page 167
9.4.8 Asymptotics of query strategies......Page 168
9.5.1 Geographic hash tables (GHT)......Page 169
9.5.3 Distributed index for features (DIFS)......Page 170
9.5.4 DIMENSIONS......Page 171
9.6.1 Query language......Page 172
9.6.3 Other work......Page 174
9.7 Summary......Page 175
Exercises......Page 176
10.1 Overview......Page 178
10.2 Basic mechanisms and tunable parameters......Page 180
10.3 Reliability guarantees......Page 181
10.3.1 Pump slowly fetch quickly (PSFQ)......Page 182
10.4.1 Adaptive rate control (ARC)......Page 183
10.4.2 Event-to-sink reliable tranport (ESRT)......Page 184
10.4.3 Congestion detection and avoidance (CODA)......Page 185
10.4.4 Fair rate allocation......Page 186
10.4.5 Fusion......Page 187
10.5.1 Velocity monotonic scheduling (VMS)......Page 188
10.5.2 Velocity-based forwarding (SPEED)......Page 189
10.6 Summary......Page 190
Exercises......Page 191
11.1 Summary......Page 192
11.2.1 Asymptotic network capacity......Page 193
11.2.4 Target tracking and collaborative signal processing......Page 194
11.2.5 Programming and middleware......Page 195
References......Page 196
Index......Page 210