Nature of Science in Science Instruction: Rationales and Strategies

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The Nature of Science in Science Education is the first book to blend a justification for the inclusion of the history and philosophy of science in science teaching with methods by which this vital content can be shared with a variety of learners. It contains a complete analysis of the variety of tools developed thus far to assess learning in this domain. This book is relevant to science methods instructors, science education graduate students and science teachers.

Author(s): William F. McComas
Series: Philosophy, History and Education
Edition: New
Publisher: Springer
Year: 2020

Language: English
Pages: 368
City: Cham

Foreword
Preface
Acknowledgments
Introduction
Organization of Nature of Science in Science Instruction
References
Contents
Part I: Nature of Science in Science Teaching and Learning: Introduction
Chapter 1: Nature of Science in Science Instruction: Meaning, Advocacy, Rationales, and Recommendations
1.1 An Introduction to Science and Its Nature as the Foundation for Science Learning
1.1.1 What Is Science?
1.1.2 What Does the Expression “Nature of Science” Mean?
1.1.3 Why “NOS”?
1.1.4 What About NOS Should Be Taught and Learned?
1.2 How We Know What We Know About How Science Works: A Brief Introduction
1.3 A History of Advocacy for NOS in Science Instruction
1.4 Rationales for the Inclusion of NOS in Science Instruction
1.4.1 NOS Understanding is Fundamental for Understanding Science
1.4.2 NOS Understanding Nutures Students’ Interest and Encourages Appreciation for Science
1.4.3 NOS Knowledge Can Assist Students and Scientists: NOS has Practical Utility
1.4.4 NOS Understanding is Vital for Citizenship
1.4.5 NOS Knowledge Supports the Learning and Teaching of Traditional Science Content
1.5 A Brief Overview of the State of Current NOS Education Research
1.6 Taking Stock and Considering the Future of NOS in the Science Curriculum
References
Chapter 2: Considering a Consensus View of Nature of Science Content for School Science Purposes
2.1 Introduction
2.2 The Consensus Approach to Defining NOS for School Science Purposes
2.3 Objections to the Consensus Approach
2.3.1 A List of Shared Practices Across all Sciences May Blur or Perhaps Misrepresent the Distinctions About How NOS Functions in the Individual Science Discipline
2.3.2 Most Suggestions for NOS Learning Goals are Focused on Only Widely Accepted Aspects of Nature of Science
2.3.3 The Consensus View of NOS for Instructional Purposes May Be Incomplete
2.3.4 The Foundation for Establishing the Consensus View of NOS Is Faulty
2.4 Further Considerations: The Distinction between Declarative and Procedural NOS Knowledge
2.5 Conclusions
References
Chapter 3: Principal Elements of Nature of Science: Informing Science Teaching while Dispelling the Myths
3.1 Introduction
3.2 Suppositions and Assertions About NOS Framing This Chapter
3.2.1 NOS Content Described as a Set of Learning Goals Is Offered to Drive Instruction, Not a List to Be Memorized
3.2.2 Science Educators Are Not Philosophers of Science
3.2.3 Science Educators Must Work with Appropriate Experts to Define NOS Learning Goals
3.2.4 There Is No One Right Way to Teach About NOS
3.2.5 We Expect the Focus of Instruction Is on Teaching About NOS
3.2.6 Science Education Is Self-Correcting
3.3 The Development of a Consensus View of NOS for School Purposes: An Introduction
3.4 A Proposal for Key Aspects of NOS Recommended for Inclusion in the Science Curriculum
3.4.1 Why Recommend These Elements of NOS for Science Instruction?
3.5 Discussion and Description of Recommended Key NOS Aspects
3.6 The Tools and Products of Science
3.6.1 Evidence in the Practice of Science
3.6.2 Laws and Theories Are Equally Important but Distinct Kinds of Knowledge
3.6.3 There Are Many Shared Methods in Science but No Single Stepwise “Scientific” Method
3.6.3.1 Shared Methods of Science
3.6.3.2 The Issue and Challenge of the Scientific Method
3.7 There Are Human Elements in Science
3.7.1 Creativity Plays a Significant Role in Science
3.7.2 Science Involves Some Subjectivity
3.7.3 There Are Sociocultural Impacts on Science and Vice Versa
3.8 The Focus of Science and Its Limitations
3.8.1 Science Is Limited in Its Ability to Answer All Questions
3.8.2 Scientific Knowledge Is Tentative and Self-Correcting but Ultimately Durable
3.8.3 Science and Engineering/Technology Are Related but Distinct
3.9 Concluding Thoughts
References
Chapter 4: Nature of Science and Classroom Practice: A Review of the Literature with Implications for Effective NOS Instruction
4.1 Introduction
4.2 Effective NOS Instruction: Key Characteristics
4.2.1 Explicit and Implicit NOS Instruction
4.2.2 Reflective NOS Instruction
4.2.3 Importance of Context in NOS Instruction
4.2.4 Considering “Explicit,” “Reflective,” and “Context” in Combination: Implications for Practice
4.3 Instructional Settings That Are Well Suited for Robust NOS Teaching and Learning
4.3.1 Inquiry Science Teaching and NOS Instruction
4.3.2 Argumentation and NOS Instruction
4.3.3 Socioscientific Issues and NOS Instruction
4.3.4 History of Science and NOS Instruction
4.4 NOS Learning Readiness and NOS Learning Progressions
4.4.1 Student Readiness: Starting Points for NOS Instruction
4.4.2 Considering Formal NOS Learning Progressions
4.4.3 Conclusions Regarding NOS Learning Progressions
4.5 NOS and Science Teacher Education
4.5.1 NOS in Methods Courses or as Part of Science Pedagogy Professional Development
4.5.2 NOS in Science Content Experiences
4.5.3 NOS in the Context of Scientific Research Experiences
4.5.4 NOS-Focused Science Education Courses and/or Professional Development
4.5.5 Summary and Synergistic Approaches to NOS Teacher Preparation
4.6 Assessing NOS Teaching and Learning
4.6.1 Assessing NOS Instruction
4.6.2 Assessing NOS Learning
4.7 Teaching About NOS: Challenges and Considerations
4.7.1 Teachers Have Limited Understanding of NOS Knowledge, Content, and Pedagogy
4.7.2 Teachers Place Limited Value on NOS Teaching and Learning
4.7.3 A Lack of NOS-Focused Instructional Materials
4.7.4 NOS Is Not Viewed as Important as “Traditional” Science Content: The Challenge of Reform Documents
4.8 Conclusions
References
Part II: Nature of Science Instruction: Foundation Knowledge for Nature of Science Instruction
Chapter 5: Beyond Experiments: Considering the Range of Investigative and Data-Collection Methods in Science
5.1 Introduction
5.2 How the Modes of Scientific Inquiry (MSI) Flowchart Can Be Useful
5.3 Teaching with Inquiry and Teaching How Science Functions
5.4 Using the MSI to Guide the Conduct of Scientific Investigations
5.5 Example 1: A Qualitative Descriptive Investigation
5.6 Example 2: A Quantitative Descriptive Investigation
5.7 Example 3: A Correlational Investigation
5.8 Conclusions and Recommendations
References
Chapter 6: Exchanging the Myth of a Step-by-Step Scientific Method for a More Authentic Description of Inquiry in Practice
6.1 The Myth and Reality of the Scientific Method
6.2 The Inquiry Wheel: An Alternative Description of the Stepwise Scientific Method
6.3 Teaching Authentic Scientific Inquiry
6.3.1 The Inquiry Wheel
6.3.2 The Role of Serendipity in Science
6.3.3 The Role of Thought Experiments in Inquiry
6.3.4 Observation and Description as Scientific Method: The Role of Qualitative Research
6.3.5 Experimentation in Inquiry
6.4 Conclusions
References
Chapter 7: Exploring the Challenges and Opportunities of Theory-Laden Observation and Subjectivity: A Key NOS Notion
7.1 Introduction
7.2 Observations, “Theories,” and the Myth of Complete Subjectivity
7.3 Pros and Cons of “Theory-Based” Observations in Science
7.4 Considering the Challenges of Observations in Science Instruction
7.5 Prior Knowledge and the Expectancy Effect in School Science
7.6 The Daphnia Dilemma: An Experimental Illustration of the Challenge of Prior Knowledge
7.6.1 Methodology
7.6.2 Results
7.7 Discussion and Conclusion
7.7.1 Implications and Recommendations
7.7.2 A Note About Ethical Considerations
A. Appendices
Appendix A: The Use of Optical Illusions to Illustrate “Theory-Based” Observations
Appendix B: A Practical Example of Expectancy in Chemistry Class
References
Chapter 8: Distinguishing Science, Engineering, and Technology
8.1 Introduction
8.2 Definitions of Science, Engineering, and Technology in U.S. Science Education Documents
8.3 Two Strategies for Teacher Training
8.3.1 Strategy One: Distinguishing Science and Engineering
8.3.1.1 Stage 1: Reveal Misconception That Engineering Articles Follow IMRD
8.3.1.2 Stage 2: Focus of Science and Engineering Articles
8.3.1.3 Stage 3: Similarities and Differences Between Science and Engineering
8.3.1.4 Stage 4: Pedagogical Implications
8.3.1.5 Practical Considerations
8.3.2 Strategy Two: The Interrelationships between Science, Engineering, and Technology
8.3.2.1 Stage 1: Reveal Prior Conceptions About Science, Engineering, and Technology
8.3.2.2 Stage 2: Comparison of Science and Engineering based on NGSS
8.3.2.3 Stage 3: Similarities and Differences between Science and Engineering
8.3.2.4 Stage 4: Reveal Remaining Misconceptions
8.3.2.5 Stage 5: Understanding Engineering Design
8.3.2.6 Stage 6: Pedagogical Implications
8.4 Summary and Conclusion
References
Part III: Teaching About Nature of Science: Generalized Instructional Perspectives
Chapter 9: The Use of Metacognitive Prompts to Foster Nature of Science Learning
9.1 Architecture of a Teaching Strategy for Teaching NOS
9.1.1 Modeling
9.1.2 Emulation
9.1.3 Self-Control
9.1.4 Self-Reflection
9.2 Sample Lessons
9.2.1 Inquiry Lesson on Gas Laws with Empiricism as an NOS Instructional Goal
9.2.1.1 Modeling
9.2.1.2 Emulation
9.2.1.3 Self-Control
9.2.1.4 Self-Reflection
9.2.2 An Inquiry Lesson on the Development of the Atomic Theory with an Application on the Modern Periodic Table and the NOS Elements of Tentativeness, Durability, and Self-Correcting Nature of the Scientific Enterprise
9.2.2.1 Modeling
9.2.2.2 Emulation
9.2.2.3 Self-Control
9.2.2.4 Self-Reflection
9.3 Creating Metacognitive Prompts of NOS for Other Lessons
9.3.1 Format for Metacognitive Prompts
9.3.2 Embedding the Suite of Prompts into Inquiry Instruction
9.4 Summary
References
Chapter 10: Teaching Nature of Science Through a Critical Thinking Approach
10.1 Introduction
10.2 NOS and Critical Thinking (CT)
10.3 Teaching NOS Critically
10.4 Feasibility Study
References
Chapter 11: The Nature of Science Card Exchange: Introducing the Philosophy of Science
11.1 The Card Exchange
11.2 Playing the Game
11.3 Conclusion
Appendix: Card Exchange Statements
References
Chapter 12: Reflecting on Nature of Science Through Philosophical Dialogue
12.1 Introduction
12.2 Nature of Science and the Importance of Reflection
12.3 An Introduction to Philosophical Dialogue
12.3.1 Beginning the Dialogue: The Centrality of Questions
12.3.1.1 Distinguishing Philosophical Questions from Scientific Questions
12.3.1.2 Stimulating Philosophical Questions
12.3.1.3 Questioning the Questions
12.3.2 Facilitating Philosophical Dialogue
12.3.2.1 Stimulating Philosophical Dialogue
12.3.3 Sustaining Philosophical Dialogue
12.4 A Note on Student Experiences
12.5 Conclusions
References
Chapter 13: Preparing Science Teachers to Overcome Common Obstacles and Teach Nature of Science
13.1 Current State of NOS Teaching and Learning
13.2 Accurately and Effectively Teaching the NOS
13.3 Obstacles That Interfere with Effective NOS Instruction
13.4 Characteristics and Actions of Teachers Who Overcome NOS Instruction Obstacles
13.5 Preparing Teachers to Navigate Constraints That Work Against NOS Teaching
References
Chapter 14: Perspectives for Teaching About How Science Works
14.1 Introduction
14.2 An Illustration of the Role of Perspectives in Knowledge Development
14.3 Perspective-Based Knowledge Development in Science Classrooms
14.3.1 Perspective-Directed Knowledge Development in Biology Education: Using a Functional Perspective
14.3.2 Perspective-Directed Knowledge Development in Chemistry Education: Using a Particle Perspective
14.4 How Can Perspective-Based Knowledge Development Contribute to Understanding of General Aspects of Nature of Science?
14.4.1 Domain #1: Human Elements in Science
14.4.2 Domain #2: Tools and Products of Science
14.4.3 Domain #3: The Special Nature of Scientific Knowledge
References
Chapter 15: Framing and Teaching Nature of Science as Questions
15.1 The Importance of Framing and Teaching the NOS as Questions
15.2 NOS Questions to Explore in Science Education
15.3 Exploring NOS Questions with Students
15.4 Standards as Cues for Teaching and Learning
References
Chapter 16: Using Real and Imaginary Cases to Communicate Aspects of Nature of Science
16.1 Introduction
16.1.1 Science as Doctrine
16.1.2 Science as Process
16.1.3 Science as Social Institution
16.1.4 Nature of Science: An Analysis of an Imaginary Case Study
16.2 An Analysis of the Causes of Mass Extinctions: An Actual Case Study in the Nature of Science
16.2.1 The Extinction Debate: An Overview
16.2.2 Using the Extinction Case Study: An Instructional Strategy
Appendix: Umbrellaology: A Science or Not?
Chapter 17: Avoiding De-Natured Science: Integrating Nature of Science into Science Instruction
17.1 Introduction
17.2 About the Activities and Experiences Presented Here
17.2.1 Tricky Tracks
17.2.2 Core Sampling and the Construction of Topographical Survey Maps
17.2.3 Doing Real Science with Real Fossils
17.2.3.1 High School Extensions
17.2.4 Construction of a Model of the Atom (Also known as, The Mystery Tube)
17.2.5 The Power and Pressure of Air
17.2.6 Mystery Bones
17.2.7 The Periodic Table
17.3 Summary
References
Chapter 18: Blending Nature of Science with Science Content Learning
18.1 Introduction
18.2 Blending NOS and Science Content Instruction
18.3 Designing Blended Instruction in the Context of Energy
18.4 Activity 1: “Energy – One Concept, Many Forms”
18.4.1 Hands-On Experiments
18.4.2 Reflective Discussion
18.5 Activity 2: “Mayer and Joule – Pathfinders to the Law of Energy Conservation”
18.5.1 Hands-On Experiment
18.5.2 Historical Background: A Reading for Students
18.5.3 Reflective Discussion
18.6 Activity 3: “Feynman’s Description of Energy Forms and Conservation”
18.6.1 Students’ Reading Assignment
18.6.2 Epistemic Discourse
18.7 Activity 4: “Dark Energy – A Frontier Question of Science”
18.7.1 Students’ Reading Assignment: The Expanding Universe
18.7.2 Reflective Discussion
18.8 Summary
References
Chapter 19: The Use of Digital Technologies to Enhance Learners’ Conceptions of Nature of Science
19.1 Scientific and Technological Literacy
19.1.1 Digital Literacies and Science Education
19.2 Digital Timelines and Video Games
19.2.1 Digital Scientific Timelines
19.2.2 Digital Video Games (DVGs): The Potential for Learning About NOS
19.3 Conclusion
References
Chapter 20: Using Exemplars to Improve Nature of Science Understanding
20.1 Introduction
20.2 An Explicit and Reflective Approach to Teacher Professional Growth for NOS
20.2.1 Step 1: Create or Use Premade NOS Guides
20.2.2 Step 2: Select Examples of Common NOS Conceptions
20.2.3 Step 3: Teacher-Learner Negotiation of Example Responses
20.2.4 Step 4: Whole Group Discussion
20.3 Influence of the NOS Example Strategy on NOS Conceptions
20.4 Conclusion
Premade NOS Guides and Exemplar Responses (Figs. 20.4, 20.5, 20.6, 20.7, and 20.8)
References
Chapter 21: Practical Learning Resources and Teacher Education Strategies for understanding Nature of Science
21.1 Introduction
21.2 Framework on Nature of Science
21.3 Designing Learning Resources
21.3.1 Aims and Values of Science
21.3.2 Social-Institutional System
21.3.3 Scientific Practices
21.3.4 Scientific Methods
21.3.5 Scientific Knowledge
21.4 Strategies for Including NOS in Science Teacher Education
21.5 Concluding Remarks
References
Chapter 22: Arguing to Learn and Learning to Argue with Elements of Nature of Science
22.1 Introduction
22.2 The Bottle Activity
22.2.1 Procedure/Scenario
22.2.1.1 Phase 1: Demonstration/Observations
22.2.1.2 Phase 2: Inferring a Model/Making a Claim
22.2.1.3 Phase 3: Alternative Explanations
22.2.1.4 Phase 4: Explicit Reflective Debriefing for NOS and Argumentation
22.3 Conclusion
References
Chapter 23: Considering the Classroom Assessment of Nature of Science
23.1 Introduction
23.2 General Practices Related to Teachers’ Classroom NOS Assessment
23.3 What Does it Mean to Understand NOS?
23.4 Understanding Aspects of NOS
23.5 Nature of Science as a “Grasp of Practice”
23.6 Knowledge of Whole Science (KnOWS)
23.7 Discussion
23.8 Recommendations
23.9 Researching Teachers’ Classroom Assessment of NOS
23.10 Development of Classroom NOS Assessments
23.11 Professional Development Efforts
References
Part IV: Teaching Aspects of the Nature of Science: Specific Instructional Strategies and Settings
Chapter 24: Using Core Science Ideas to Teach Aspects of Nature of Science in the Elementary Grades
24.1 Introduction
24.1.1 Explanation of Targeted Aspects of NOS (for the Teacher)
24.1.2 Subject-Matter Targeted (for the Teacher)
24.1.3 Learning Goals (for the Student)
24.1.4 Materials for Periods One and Two
24.1.4.1 Description of Activity
24.2 Conclusion
References
Chapter 25: Improving Nature of Science Instruction in Elementary Classrooms with Modified Trade Books and Educative Curriculum Materials
25.1 Introduction
25.2 The Strategy
25.2.1 Selecting and Modifying Science Trade Books
25.2.2 Developing the Educative Curriculum Materials
25.3 Implementing the Strategy in the Classroom
25.4 Conclusion
References
Chapter 26: Using a Participatory Problem Based Methodology to Teach About NOS
26.1 Introduction
26.2 NOS as a Pedagogical Construct for Teaching and Learning About HPSS
26.3 A Participatory PBL Methodology
26.4 Applying Participatory PBL Methodology to Teach About NOS
26.4.1 General Argument and Key Questions in Teaching Planning
26.4.2 Socioscientific Issues as Cases for Analysis
26.4.3 Exemplifying the PBL Participatory Approach for Teaching About NOS in an Undergraduate Setting
26.4.4 Exemplifying the PBL Participatory Approach to Teaching About NOS in a Graduate Setting
26.5 Concluding Remarks
References
Chapter 27: Storytelling as a Pedagogical Tool in Nature of Science Instruction
27.1 Introduction
27.1.1 Storytelling as a Teaching Method
27.1.2 Telling Stories from the HΟS Promotes NΟS Understanding
27.2 How to Tell an Effective HOS Story
27.2.1 Choosing and Adapting the Proper Story to Tell
27.2.1.1 Characteristics of a Science Story
27.2.1.2 The Form of the Story
27.2.1.3 Points for Attention
27.2.2 The Storytelling
27.2.2.1 Designing Your Personal Version of the Story
27.2.2.2 Telling the Story
27.2.3 After Storytelling: The Dialogue
27.3 Examples and Suggestions for Effective Teaching of NOS-Related Issues Through Storytelling
27.3.1 Relating HOS Stories to Various Aspects of NOS
27.3.1.1 Science Depends on Empirical Evidence
27.3.1.2 Science Shares Many Common Features in Terms of Method
27.3.1.3 Science Is Tentative, Durable, and Self-Correcting
27.3.1.4 Laws and Theories Are Not the Same
27.3.1.5 Science Has Creative Elements
27.3.1.6 Science Has a Subjective Component
27.3.1.7 There Are Historical, Cultural, Political, and Social Influences on Science
27.3.1.8 Science and Technology Impact Each Other, But They Are Not the Same
27.3.1.9 Science Cannot Answer All Questions
27.4 Assessing the Effectiveness of Storytelling in Teaching NOS-Related Issues
27.5 Conclusions
Appendix: Brief Example of a Story: The Double Helix
References
Chapter 28: Using Stories Behind the Science to Improve Understanding of Nature of Science, Science Content, and Attitudes Toward Science
28.1 Science Textbooks and NOS Instruction
28.2 “The Story Behind the Science” Project
28.3 Strategies for Effectively Implementing the Project Stories
28.4 Classroom Example Illustrating the Use of Project Stories
28.5 Project Outcomes and Future Directions
References
Chapter 29: A Typology of Approaches for the Use of History of Science in Science Instruction
29.1 Introduction and Rationales for the Use of the History of Science (HOS) in Science Instruction
29.2 Why Propose a Classification Scheme for HOS Curriculum and Instructional Designs?
29.3 The Impact of HOS on Student Learning
29.4 Proposed History of Science Typology of Instructional Approaches
29.4.1 Type 1.0: First-Hand Interactions with Original Works (Teaching and Learning with Primary Sources)
29.4.1.1 Impact on Students Through the Primary Source Approach
29.4.2 Type 2.0: Case Studies, Stories, and Other Similar Illustrations of the History of Science (May Include Interaction with Original Written Materials and Laboratory Experiences)
29.4.2.1 Impact on Students Through the Case Study/Story Approach
29.4.3 Type 3.0: Biographies and Autobiographies Detailing Scientists’ Lives and Discoveries
29.4.3.1 Impact on Students Through the Biography Approach
29.4.4 Type 4.0: Book Length Presentations of Some Aspect of the History of Science
29.4.4.1 Impact on Students Through the Book Approach
29.4.5 Type 5.0: Role-Playing and Related Activities with Respect to Historical Personages
29.4.5.1 Impact on Students Through the Role-Playing Approach
29.4.6 Type 6.0: Textbook Inclusions Related to the History of Science
29.4.6.1 Impact on Students Through the Textbook HOS Inclusion Approach
29.4.7 Type 7.0: Experimental Reenactments and Other “Hands-On” Approaches for Engagement with Various Historical Aspects of Science
29.4.7.1 Impact on Students Through the Experimental Reenactment Approach
29.5 Considering the History of Science in Science Education
29.6 Challenges Faced in Incorporating HOS in Science Instruction
References
Chapter 30: Using Anecdotes from the History of Biology, Chemistry, Geology, and Physics to Illustrate General Aspects of Nature of Science
30.1 Introduction to the History of Science Anecdote Approach
30.2 Science Relies on Empirical Evidence
30.2.1 Biology
30.2.2 Chemistry
30.2.3 Geology
30.2.4 Physics
30.3 Historical Examples Demonstrating That There Are Shared Methods But No Step-by-Step Method Used by All Scientists
30.3.1 Biology
30.3.2 Chemistry
30.3.3 Geology
30.3.4 Physics
30.4 Historical Illustrations to Show That Laws and Theories Are Distinct and Not Hierarchically Related Kinds of Scientific Knowledge
30.4.1 Biology
30.4.2 Chemistry
30.4.3 Geology
30.4.4 Physics
30.5 Using the History of Science to Show the Creative Aspect of Science
30.5.1 Biology
30.5.2 Chemistry
30.5.3 Geology
30.5.4 Physics
30.6 Using the History of Science to Demonstrate the Subjective Element of Science
30.6.1 Biology
30.6.2 Chemistry
30.6.3 Geology
30.6.4 Physics
30.7 Using the History of Science to Illustrate the Historical, Cultural, Political, and Social Influences on Science
30.7.1 Biology
30.7.2 Chemistry
30.7.3 Geology
30.7.4 Physics
30.8 Science, Engineering, and Technology Influence Each Other But Are Not the Same
30.8.1 Biology
30.8.2 Chemistry
30.8.3 Geology
30.8.4 Physics
30.9 Scientific Knowledge Is Tentative But Durable and Self-Correcting
30.9.1 Biology
30.9.2 Chemistry
30.9.3 Geology
30.9.4 Physics
30.10 Science Cannot Answer All Questions
30.10.1 Biology
30.10.2 Chemistry
30.10.3 Geology
30.10.4 Physics
30.11 Conclusions
References
Chapter 31: Using the Pendulum to Teach Aspects of the History and Nature of Science
31.1 The Pendulum and the Foundation of Modern Science
31.2 Galileo and the Pendulum
31.3 A New Science and New Nature of Science: Galileo’s Methodological Innovation
31.4 Huygens Refinement of Galileo’s Claims
31.5 Huygens Pendulum Clock
31.6 The Proposal of an International Length Standard
31.7 Using the Pendulum to Determine the Shape of the Earth
31.8 The Nature of Science Illustrated in the Testing of the Spherical Earth Theory
31.9 The Pendulum in Newton’s Physics
31.10 Conclusion
References
Chapter 32: Historical Inquiry Cases for Teaching Nature of Science Analytical Skills
32.1 Science in Action and History
32.2 History and Science-in-the-Making
32.3 Posing Authentic NOS Questions
32.4 Developing Lifelong NOS Analytical Skills
32.5 Resources
References
Chapter 33: Teaching About Nature of Science Through Historical Experiments
33.1 Introduction
33.2 School Children Building Science Instruments
33.3 Exchanges with Historical Experimenters and the Incomplete Story
33.4 Explorations with Light in Response to Historical Observations and Experiments
33.5 Teaching University Students About NOS Through Historical Experiments
33.6 Using the Historical Approach to Encourage Students’ Own Research Projects
33.7 Concluding Remarks
References
Chapter 34: Teaching the Limits of Science with Card-Sorting Activities
34.1 Introduction: The Limits of Science Are Part of Nature of Science
34.2 Classroom Activities: Considering the Limits of Science
34.2.1 Activity 1: What Characterizes Scientifically Appropriate Questions?
34.2.1.1 Specific Instructions for the Activity
Phase 1: Sorting the Questions (Group Work)
Phase 2: Formulating Reasons for the Sorting (Group Work)
Phase 3: Whole Class Discussion
34.2.1.2 Examples of Issues to Focus on During Whole Class Discussion
34.2.2 Activity 2: On What Presuppositions Is Science Based?
34.2.2.1 Specific Instructions for the Activity
Phase 1: Sorting of Cards (Group Work)
Phase 2: Whole Class Discussion
34.2.2.2 Examples of Issues to Focus on During Whole Class Discussion
34.3 Concluding Remarks
References
Chapter 35: Supporting Science Teachers’ Nature of Science Understandings Through a Specially Developed Philosophy of Science Course
35.1 Introduction
35.2 Philosophy of Science and Nature of Science
35.3 A Philosophy of Science Course for Science Teachers
35.3.1 Class 1: The Relevance of Philosophy of Science to Science Instruction
35.3.2 Class 2: Key Concepts in Philosophy of Science
35.3.3 Class 3: Science and Epistemology
35.3.4 Class 4: Causation and Explanation
35.3.5 Class 5: Scientific Evidence and Theorizing
35.3.6 Class 6: Scientific Realism/Models/Representation
35.3.7 Classes 7 and 8: Methodological and Epistemic Characteristics of Experimental and Historical Science
35.3.8 Class 9: Conceptual Change in Science
35.3.9 Classes 10 and 11: Science and Ethics/Science and Religion; Philosophy of Science and History of Science
35.3.10 The Microteaching Sessions
35.4 Some Conclusions from the Implementation of the Course
35.5 Conclusions and Implications
References
Chapter 36: Learning Aspects of Nature of Science Through Authentic Research Experiences
36.1 Introduction
36.2 Aspects of Authentic Investigations in K-12 Learning Settings
36.3 Adapting Primary Literature
36.4 Authentic Research Lab (ARL)
36.5 Research Apprenticeships in Professional Contexts
36.6 Resolving Challenges to NOS Instruction in Authentic Environments
36.7 Conclusions
References
Chapter 37: Strengthening Future Science Teachers’ Understanding of Nature of Science: The Role of an Embedded Research Experience in Teacher Preparation
37.1 Rationales and Key Elements for a New Science Methods Course
37.2 The Course Strategy Is Supported by Education Research
37.3 The Elements of a Successful SM-CURE
37.3.1 Information Provided to PSTs During an Orientation Meeting
37.3.2 Preparing the Research Mentors
37.4 SM-CURE Course Assignments
37.5 Description of SM-CURE Assignments as they Relate to NOS Learning
37.5.1 Research Apprenticeships in Support of NOS Learning
37.5.2 Research Posters and Their Role in NOS Learning
37.5.3 Preservice Science Teacher Research Symposium & Reception
37.5.4 The Research Paper
37.5.5 Preparation of a Standards-Based Research Lesson
37.5.6 Fostering Explicit-Reflective Instruction About NOS
37.5.7 NOS in Small Group and Whole Class Discussions
37.6 Changes in the Views PSTs Hold About Nature of Science
37.7 Conclusions
References
Chapter 38: Introducing the Human Elements of Science Through a Context-Rich Thematic Project
38.1 Introduction
38.2 A Thematic Project on the Topic of Sugar and Sweeteners
38.2.1 Introduction to the Thematic Project
38.2.2 Reading and Discussing About the Sugar/Sweetener Debate
38.2.3 Panel Debate
38.2.4 Planning and Performing an Investigation (2 Sessions)
38.3 Conclusions
References
Chapter 39: Informal Learning Sites and Their Role in Communicating the Nature of Science
39.1 What Is Informal Learning?
39.2 Learning in Schools and in Non-school Settings
39.3 Opportunities and Challenges: NOS Learning in Informal Environments
39.3.1 Teaching Aspects of NOS in Schools and Beyond
39.4 Case Studies of NOS in Diverse Informal Environments: Possibilities for Practice
39.4.1 NOS Learning in Museums
39.4.2 Museums and the Nature of Science: Unfortunate and Encouraging Examples
39.5 A Question of Truth: NOS at the Ontario Science Centre
39.6 Scientist for a Day: Thinking About NOS at the Science Centre Singapore
39.7 Learning Science in the Field
39.8 Learning About NOS Holistically: Gaining a Sense of Process and Place
39.8.1 Charles Darwin: An Example of Process and Place
39.9 Concluding Thoughts
References
About the Contributors