Nanotechnology for the Energy Challenge

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Javier Garcia-Martinez, Ernest J. Moniz
Edition: 1
Year: 2010

Language: English
Pages: 500

Nanotechnology for the Energy Challenge......Page 2
Contents......Page 10
Introduction......Page 18
List of Contributors......Page 20
Part One: Sustainable Energy Production......Page 24
1.1 Energy Challenge in the 21st Century and Nanotechnology......Page 26
1.2.1 Photovoltaics......Page 29
1.2.2 Hydrogen Production......Page 37
1.2.3 Fuel Cells......Page 43
1.2.4 Thermoelectricity......Page 49
Acknowledgment......Page 51
References......Page 52
2.1 Introduction......Page 56
2.2 Semiconductors and Optical Absorption......Page 57
2.3 Dye Molecular Engineering......Page 61
2.4 The Stable Self-Assembling Dye Monomolecular Layer......Page 63
2.5 The Nanostructured Semiconductor......Page 64
2.6 Conclusions......Page 66
References......Page 67
3.1 Introduction......Page 70
3.2 Established Bulk Thermoelectric Materials......Page 71
3.3 Selection Criteria for Bulk Thermoelectric Materials......Page 74
3.4 Survey of Size Effects......Page 76
3.4.1 Classic Size Effects......Page 77
3.4.2 Quantum Size Effects......Page 78
3.4.3 Thermoelectricity of Nanostructured Materials......Page 79
3.5 Thermoelectric Properties on the Nanoscale: Modeling and Metrology......Page 81
3.6.1 Bi Nanowire/Nanorod......Page 83
3.6.2 Si Nanowire......Page 85
3.6.3 Engineered “Exotic” Nanostructures......Page 87
3.6.4 Thermionics......Page 89
3.6.5 Thermoelectric Nanocomposites: a New Paradigm......Page 91
3.7 Summary and Perspectives......Page 96
References......Page 97
4.1 Introduction......Page 102
4.2.1 Cathode Reaction......Page 103
4.2.2 Anodic Reaction......Page 106
4.2.3 Practical Fuel Cell Catalysts......Page 108
4.2.5 Electrolytes......Page 113
4.2.6 High-Temperature Polymer Electrolyte Membranes......Page 114
4.2.7 Membrane-Electrode Assembly (MEA)......Page 119
4.3 High-Temperature Fuel Cells......Page 121
4.3.1 High-Temperature Ceramic Electrocatalysts......Page 124
4.3.2 Direct Utilization of Dry Hydrocarbons in SOFCs......Page 126
References......Page 129
5.1 Introduction......Page 134
5.2.1 General Approach......Page 136
5.2.2 Need for Nanomaterials......Page 137
5.2.3 Nanomaterials-Based Photoelectrochemical Cells for H2 Production......Page 138
5.2.4 Semiconductors with Specific Morphology: Nanotubes and Nanodisks......Page 140
5.2.5 Sensitization......Page 146
5.3 Summary......Page 154
References......Page 155
Part Two: Efficient Energy Storage......Page 160
6.1 Introduction......Page 162
6.2 Hydrogen Storage by Physisorption......Page 163
6.2.1 Nanostructured Carbon......Page 164
6.2.2 Zeolites......Page 165
6.2.4 Clathrates......Page 166
6.3.1 Metal and Complex Hydrides......Page 167
6.3.2 Chemical Hydrides......Page 170
6.3.3 Nanocomposites......Page 171
References......Page 174
7.1 Introduction......Page 178
7.2.1 From Rejected Insertion Materials to Attractive Electrode Materials......Page 181
7.2.2 The Use of Once Rejected Si-Based Electrodes......Page 183
7.2.3 Conversion Reactions......Page 184
7.3.1.2 Nano-Architectured Current Collectors......Page 186
7.3.2.1 Application to Li-Ion Batteries: Mesoporous Chromium Oxides......Page 191
7.3.2.2 Application to Electrochemical Double-Layer Capacitors......Page 192
7.4 Conclusion......Page 197
References......Page 198
8.2 Nanotexture and Surface Functionality of sp2 Carbons......Page 200
8.3.1 Principle of a Supercapacitor......Page 203
8.3.2 Carbons for Electric Double Layer Capacitors......Page 205
8.3.3.1 Pseudocapacitance Effects Related with Hydrogen Electrosorbed in Carbon......Page 208
8.3.3.2 Pseudocapacitive Oxides and Conducting Polymers......Page 211
8.3.3.3 Pseudo-Capacitive Effects Originated from Heteroatoms in the Carbon Network......Page 213
8.4 Lithium-Ion Batteries......Page 217
8.4.1 Anodes Based on Nanostructured Carbons......Page 218
8.4.2 Anodes Based on Si/C Composites......Page 219
8.4.3 Origins of Irreversible Capacity of Carbon Anodes......Page 222
8.5 Conclusions......Page 224
References......Page 225
9.1 Overcoming Limitations to Superconductors’ Performance......Page 228
9.2 Flux Pinning by Nanoscale Defects......Page 230
9.3 The Grain Boundary Problem......Page 231
9.4 Anisotropic Current Properties......Page 233
9.5 Enhancing Naturally Occurring Nanoscale Defects......Page 235
9.6 Artificial Introduction of Flux Pinning Nanostructures......Page 238
9.7 Self-Assembled Nanostructures......Page 239
9.8 Control of Epitaxy-Enabling Atomic Sulfur Superstructure......Page 244
References......Page 246
Part Three: Energy Sustainability......Page 252
10.1 Introduction......Page 254
10.1.1 Motivation......Page 255
10.1.2 Energetic Costs of Nanofabrication......Page 256
10.1.3 Use of Tools......Page 257
10.1.5 Scope......Page 259
10.2.1.1 Hard Pattern Transfer Elements......Page 261
10.2.1.2 Soft Pattern Transfer Elements......Page 263
10.2.2.1 Microcontact Printing......Page 267
10.2.2.2 Dip-Pen Nanolithography......Page 268
10.2.3 Edge Lithography by Nanoskiving......Page 269
10.2.3.3 Open- and Closed-Loop Structures......Page 271
10.2.3.4 Linear Arrays of Single-Crystalline Nanowires......Page 272
10.2.3.5 Conjugated Polymer Nanowires......Page 275
10.2.3.6 Nanostructured Polymer Heterojunctions......Page 276
10.2.3.7 Outlook......Page 281
10.2.4.1 Hollow Inorganic Tubes......Page 282
10.2.4.2 Outlook......Page 284
10.2.5 Electrospinning......Page 286
10.2.5.1 Scanned Electrospinning......Page 287
10.2.5.3 Core/Shell and Hollow Nanofibers......Page 288
10.2.6 Self-Assembly......Page 290
10.2.6.1 Hierarchical Assembly of Nanocrystals......Page 291
10.2.6.2 Block Copolymers......Page 292
10.3.1 Scotch-Tape Method for the Preparation of Graphene Films......Page 294
10.3.3 Shrinky-Dinks for Soft Lithography......Page 295
10.4 Conclusions......Page 297
References......Page 298
11.1 Introduction......Page 304
11.3 Naphtha Reforming......Page 305
11.4 Hydrotreating......Page 312
11.5 Cracking......Page 316
11.6 Hydrocracking......Page 318
11.8 Water-Gas Shift......Page 319
11.9 Methanol Synthesis......Page 321
11.10 Fischer–Tropsch Synthesis (FTS)......Page 325
11.11 Methanation......Page 330
11.12 Nanocatalysis for Bioenergy......Page 331
11.13 The Future......Page 335
References......Page 337
12.1 Introduction......Page 342
12.1.1 “Single-Site” Heterogeneous Catalysis......Page 343
12.1.2 Techniques for the Characterization of Heterogeneous Catalysts......Page 344
12.2.1 Supported Materials......Page 345
12.2.2.1 Non-Covalent Binding of Homogeneous Catalysts......Page 347
12.2.2.2 Immobilization of Catalysts on the Surface through Covalent Bonds......Page 350
12.2.2.3 Post-Grafting Silylation Method......Page 351
12.2.2.4 Co-Condensation Method......Page 353
12.2.3 Alternative Synthesis of Immobilized Complex Catalysts on the Solid Support......Page 356
12.3.1 Surface Interaction of Silica and Immobilized Homogeneous Catalysts......Page 358
12.3.2 Reactivity Enhancement of Heterogeneous Catalytic System Induced by Site Isolation......Page 360
12.3.3 Introduction of Functionalities and Control of Silica Support Morphology......Page 361
12.3.4 Selective Surface Functionalization of Solid Support for Utilization of Nanospace Inside the Porous Structure......Page 365
12.3.5 Cooperative Catalysis by Multi-Functionalized Heterogeneous Catalyst System......Page 369
12.3.6 Tuning the Selectivity of Multi-Functionalized Hetergeneous Catalysts by Gatekeeping Effect......Page 371
12.3.7 Synergistic Catalysis by General Acid and Base Bifunctionalized MSN Catalysts......Page 374
12.5 Conclusion......Page 377
References......Page 379
13.1 Introduction......Page 382
13.2 CO2 Capture Processes......Page 387
13.3 Nanotechnology for CO2 Capture......Page 389
13.4 Porous Coordination Polymers for CO2 Capture......Page 394
References......Page 418
14.1 Introduction......Page 426
14.2.1 Multilayer Structured OLEDs and PLEDs......Page 428
14.2.2 Charge Balance in a Polymer Blended System......Page 429
14.2.3 Interfacial Layer and Charge Injection......Page 434
14.2.3.1 I–V Characteristics......Page 435
14.2.3.2 Built-in Potential From Photovoltaic Measurement......Page 436
14.2.3.3 XPS/UPS Study of the Interface......Page 438
14.2.3.4 Comparison with Cs/Al Cathode......Page 443
14.3.1 Fluorescence and Phosphorescent Materials......Page 444
14.3.2 Solution-Processed Phosphorescent Materials......Page 445
14.4 Multi-Photon Emission and Tandem Structure for OLEDs and PLEDs......Page 451
14.5 The Enhancement of Light Out-Coupling......Page 452
14.6 Outlook for the Future of Nanostructured OLEDs and PLEDs......Page 454
References......Page 455
15.1 Introduction......Page 458
15.2.1 Functional Principles and Basic Materials......Page 460
15.2.2 The Role of Nanostructure......Page 462
15.2.3 The Cause of Optical Absorption......Page 466
15.3.1 Data on Foil-Based Devices with W Oxide and Ni Oxide......Page 468
15.3.2 Au-Based Transparent Conductors......Page 472
15.3.3 Thermochromic VO2-Based Films for Use with Electrochromic Devices......Page 474
15.4 Conclusions and Remarks......Page 475
References......Page 478
Index......Page 482