Quickly becoming the hottest topic of the new millennium (2.4 billion dollars funding in US alone) Current status and future trends of micro and nanoelectronics research Written by leading experts in the corresponding research areas Excellent tutorial for graduate students and reference for "gurus" Provides a broad overlook and fundamentals of nanoscience and nanotechnology from chemistry to electronic devices
Author(s): Anatoli Korkin, Evgeni Gusev, Jan K. Labanowski, Serge Luryi
Edition: 1
Publisher: Springer
Year: 2007
Language: English
Pages: 371
0387233490......Page 1
Nanotechnology for Electronic
Materials and Devices......Page 4
Copyright Page
......Page 5
Preface......Page 6
Table of contents
......Page 8
1.2. MICROELECTRONICS TOWARD THE NANO ERA......Page 9
1.2.1. Moore's Laws and MOSFET Paradigm
......Page 10
1.2.2.1. Photolithography......Page 13
1.2.2.3. Doping......Page 15
1.2.2.4. Etching......Page 16
1.2.2.5. Deposition......Page 17
1.2.3. The Historical Evolution of Microelectronics
......Page 18
1.2.4. Trying to Sustain the Validity of the First Moore Law
......Page 20
1.2.5. Theoretical Limits of Computation......Page 23
1.3.1. Molecules of Potential Interest for Molecular Electronics
......Page 26
1.3.1.1. Molecules Involving Internal Redox......Page 27
1.3.1.2. Molecules Involving External Redox......Page 28
1.3.2.1. Supramolecular Systems as Simple Solid-State Devices......Page 30
1.3.2.2. A Molecular Random Access Memory......Page 32
1.3.3.1. An Opportunistic Approach......Page 36
1.3.3.2. A Dedicated Approach......Page 39
1.4.1.1. The Spacer Patterning Technology......Page 40
1.4.1.2. The Multispacer Patterning Technology......Page 41
1.4.2. Inserting the Guest......Page 44
1.4.3. Addressable Nanowires and the Nano-to-Lϊtho Link
......Page 47
1.4.4. Circuit and Process Architecture......Page 50
1.5. READING AND WRITING MOLECULES AS QUANTUM PROCESSES......Page 51
1.5.1. Conventional Flash Memory Devices......Page 53
1.5.2. A Possible Molecular Flash Device......Page 55
1.5.3. What Do We Measure Measuring Static 1 - V Characteristics of Single Molecules?......Page 58
1.6.1. The Bottom-up Description of Nature
......Page 61
1.6.2. The Bottom-up Construction of Physical Theories
......Page 62
1.6.3. Anything Else?......Page 64
1.7. CONCLUSIONS: PRELIMINARY, TENTATIVE, PROVISIONAL......Page 68
REFERENCES......Page 69
2.1. INTRODUCTION......Page 74
2.2. PRINCIPLES OF SOl TECHNOLOGY......Page 75
2.3.1. Wafer Bonding......Page 77
2.3.3. Eltran......Page 78
2.3.5. Other SOl Materials......Page 79
2.4.1.1. Threshold Voltage......Page 81
2.4.1.2. Subthreshold Slope......Page 82
2.4.1.4. Volume Inversion......Page 83
2.4.1.6. Metastable Dip......Page 84
2.4.2.1. Kink Effect......Page 85
2.4.2.4. Transient and History Effects......Page 86
2.4.3 . Transition from Partial to Full Depletion......Page 87
2.5.1. Wafer Characterization: Ψ-MOSFET......Page 88
2.5.2. MOSFET Characteristics......Page 89
2.5.4. Charge Pumping Technique......Page 90
2.6. DIMENSIONAL EFFECTS IN SOl MOSFETs......Page 91
2.6.1. Short Channels......Page 92
2.6.2. Narrow Channels......Page 93
2.6.3. Channel Thickness......Page 94
2.6.3.1. Supercoupling......Page 95
2.6.3.2. Mobility Issues......Page 96
2.6.4. Ultrathin Gate Dielectric......Page 97
2.6.5. Innovative Buried Insulators......Page 99
2.7.1. Double-Gate MOSFETs......Page 101
2.7.2. Triple-Gate MOSFETs......Page 103
2.7.3. Gate-All-Around MOSFETs......Page 105
2.7.4. Four-Gate FEr......Page 106
2.8. CONCLUSIONS......Page 107
REFERENCES......Page 108
3.1. INTRODUCTION......Page 112
3.1.1.1. Electrons in Semiconductor......Page 113
3.1.1.2. Photons in Semiconductor......Page 115
3.1.1.3. Semiconductor p-n Junction......Page 117
3.1.2. The Scope......Page 119
3.2.1.1. Spherical Nanocrystals: An Example......Page 120
3.2.1.2. Quantum Confinement in One, Two, and Three dimensions......Page 122
3.2.2.1. Density of States......Page 123
3.2.2.2. Material Gain......Page 124
3.2.3.1 . Threshold Condition......Page 125
3.2.3.2. Threshold Current Density......Page 127
3.3. SEMICONDUCTOR LASER CAVITY STRUCTURES: PHOTON CONFINEMENT......Page 129
3.3.1. Edge-Emitting Laser Cavity......Page 130
3.3.2. Vertical Cavity Surface-Emitting Laser and Photonic Crystal Laser Cavity......Page 132
3.4.QUANTUM WELL LASERS......Page 136
3.4.1.1. Molecular-Beam Epitaxy......Page 137
3.4.1.2. Metal-Organic Chemical Vapor Deposition......Page 138
3.4.2.1. Quantum Well Lasers......Page 139
3.4.2.2. Quantum Cascade Lasers......Page 140
3.5. QUANTUM WIRE LASERS......Page 141
3.5.1.1. Nanoscale Lithography......Page 142
3.5.1.2. Self-organization......Page 143
3.5.1.3. Selective Growth on Prepatterned Substrates......Page 145
3.5.1.4. Chemical (Bottom-up) Synthesis......Page 147
3.5.2.1. Lasers Based on Lithographically Defined Quantum Wires......Page 148
3.5.2.2. Lasers Based on Self-organized Quantum Wires......Page 150
3.5.2.3 . Lasers Based on Selective Grown Quantum Wires......Page 154
3.5.2.4. Lasers Based on Chemically Synthesized Crystalline Quantum Wires......Page 159
3.6.1. Quantum Dot Fabrication Technologies......Page 160
3.6.1.2. Self-organization......Page 161
3.6.1.3. Chemical Synthesis......Page 163
3.6.2.2. Lasers Based on Self-organized Quantum Dots......Page 164
3.6.2.3. Lasers Based on Chemically Synthesized Quantum Dots......Page 166
REFERENCES......Page 167
4.1. INTRODUCTION......Page 177
4.2. NANOCRYSTAL MEMORY DEVICE PHYSICS......Page 180
4.3. NANOCRYSTAL ENGINEERING......Page 187
4.4. NVM BITCELL CHARACTERISTICS......Page 191
4.5.MEMORY ARRAY FABRICATION ANDCHARACTERIZATION......Page 197
4.6. SUMMARY......Page 201
REFERENCES......Page 202
5.1. INTRODUCTION......Page 204
5.2.WHY k VALUES OF HIGH-k MATERIALS ARE HIGH......Page 205
5.3. CHOICE OF MATERIALS......Page 210
5.4. EFFECTS OF ELECTRON TRAPPING......Page 211
5.5. STRUCTURAL PROPERTIES OF GATE STACK AND MOBILITY DEGRADATION......Page 218
REFERENCES......Page 225
6.1.INTRODUCTION......Page 228
6.2. SCANNING PROBE MICROSCOPY......Page 229
1. The very end of the tip apex must be atomically sharp.......Page 230
3. The interaction must change by an amount easily measurable during scanning of the tip above or on the sample surface.......Page 231
6.3. MODES OF SPM OPERATION......Page 232
6.4.1. Tunneling Effect......Page 233
6.4.2. Examples of STM Imaging......Page 235
6.5. ATOMIC FORCE MICROSCOPY......Page 236
6.5.1. Contact AFM......Page 237
6.5.2. Dynamic Force Microscopy......Page 238
6.5.3. Detection of the Cantilever Vibrations......Page 239
6.5.4. Tip-Surface Interaction of a Vibrating Cantilever......Page 241
6.5.5. Tip-Surface Interaction Forces......Page 245
6.5.6. Dynamic Force Microscopy f or Ionic Insulator Surfaces
......Page 246
6.5.7. Dynamic Force Microscopy of AIII-BV Semiconductor Surfaces......Page 248
6.5.8. Chemical Sensing with DFM......Page 249
6.6. KELVIN PROBE FORCE MICROSCOPY......Page 252
6.7. CONCLUSIONS......Page 258
REFERENCES......Page 259
7.1. INTRODUCTION......Page 262
7.3.1. Random Discrete Dopants......Page 265
7.3.2. Line-Edge Roughness......Page 270
7.3.3. Oxide Thickness Fluctuations......Page 273
7.4. METHODOLOGY......Page 275
7.4.1. Density Gradient in Drift-Diffusion Simulations......Page 276
7.4.2.1 . Dirichlet Boundary Conditions......Page 279
7.4.2.3. Si/SiO2 Interface Boundary Conditions......Page 280
7.5. PROBLEMS IN CLASSICAL SIMULATIONS......Page 281
7.5.1. Charge Localization......Page 282
7.5.2. "Atomistic" Resistor Study......Page 284
7.5.3. Quantum Corrections......Page 285
7.5.4. Mesh Sensitivity......Page 286
7.5.5. DG Corrections for Holes......Page 287
7.6.AB INITIO COULOMB SCATTERING IN MONTE CARLO SIMULATIONS......Page 288
7.6.2. Percentage Change in Current......Page 290
7.6.2 .1. Device 3......Page 292
7.6.2.2. Device 5......Page 293
7.6.3. Conclusions on Ab Initio Coulomb Scattering......Page 295
7.7. IMPACT OF INTRINSIC PARAMETER FLUCTUATION ON CIRCUITS AND SYSTEMS......Page 297
7.7.1. Statistical Compact Modeling
......Page 298
7.7.2. Extraction Results......Page 299
7.7.3. Impact of Intrinsic Parameter Fluctuation on 6-T SRAM......Page 301
REFERENCES......Page 306
8.1. INTRODUCTION......Page 309
8.2.1. Variational Approach......Page 315
8.2.2. Effective Mass of a Continuous Strong-Coupling Polaron......Page 319
8.2.3. Weak-Coupling (Fröhlich) Polaron
......Page 321
8.3.1. Holstein Model......Page 325
8.3.2. Nonadiabatic Small Polaron......Page 327
8.3.3. Adiabatic Small Polaron......Page 329
8.3.4. Electron-phonon and Coulomb Interactions in Wannier Representation......Page 330
8.3.5. Polaron Band......Page 333
8.3.6. From Continuous to Small Holstein and Small Fröhlich Polarons: QMC Simulation
......Page 335
8.4. ATTRACTIVE CORRELATIONS OF SMALL POLARONS......Page 339
8.5. MOLECULAR SWITCHING: NEGATIVE-U HUBBARD MODEL
......Page 342
8.5.1. Steady Current Through MQDs......Page 343
8.5.2. MQD Green's Function and Rate Equation......Page 344
8.5.3. Switching Effect......Page 346
8.6.1. MQD Density of States: Correlation and Phonon Side Bands......Page 349
8.6.2. Nonlinear Rate Equation and Switching......Page 352
8.7. CONCLUSION......Page 355
REFERENCES......Page 357
Index......Page 361