Nanotechnologies for Future Mobile Devices

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Explore the potential for nanotechnologies to transform future mobile and Internet communications. Based on a research collaboration between Nokia, Helsinki University of Technology, and the University of Cambridge, here leading researchers review the current state-of-the art and future prospects for: • Novel multifunctional materials, dirt repellent, self-healing surface materials, and lightweight structural materials capable of adapting their shape • Portable energy storage using supercapacitor-battery hybrids based on new materials including carbon nanohorns and porous electrodes, fuel cell technologies, energy harvesting and more efficient solar cells • Electronics and computing advances reaching beyond IC scaling limits, new computing approaches and architectures, embedded intelligence and future memory technologies. • Nanoscale transducers for mechanical, optical and chemical sensing, sensor signal processing, and nanoscale actuation • Nanoelectronics to create ultrafast and adaptive electronics for future radio technologies • Flat panel displays with greater robustness, improved resolution, brightness and contrast, and mechanical flexibility • Manufacturing and innovation processes, plus commercialization of nanotechnologies.

Author(s): Tapani Ryhänen, Mikko A. Uusitalo, Olli Ikkala, Asta Kärkkäinen
Edition: 1
Publisher: Cambridge University Press
Year: 2010

Language: English
Pages: 284

Half-title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 7
List of contributors......Page 12
Preface......Page 15
1.1.1 Mobile communication and the Internet......Page 17
1.1.2 Towards merging of physical and digital worlds......Page 19
1.2.1 Navigation in space and time......Page 20
1.2.2 Transformable device......Page 21
1.2.4 Lifestyle and the mobile device (global knowledge, local view)......Page 23
1.3.1 Assisted living and remote health care for the elderly......Page 25
1.3.2 Integrated cognitive systems......Page 26
1.4.1 Augmented reality......Page 27
1.4.2 Embedded ambient intelligence......Page 28
1.5.1 Looking for the global solution......Page 29
1.5.2 Global population is ageing and polarizing......Page 30
1.5.3 Environmental challenges need global solutions......Page 32
1.5.4 Sustainable economies and efficient ways of living......Page 33
1.6 About this book......Page 34
References......Page 35
2.1 Introduction......Page 37
2.2 Nanocomposites by adding nanoscale reinforcements to tune the mechanical properties......Page 38
2.2.1 Classic nanocomposites based on platelike reinforcements, as illustrated by nanoclay......Page 40
2.2.2 Nanocomposites based on fibrillar reinforcements, as illustrated by carbon nanotubes (CNTs) and cellulose nanofibrils......Page 42
2.3.1 Block copolymers: a facile concept for self-assembly and applications......Page 46
2.3.2 Biological materials: selected examples......Page 50
2.3.2.1 Example of a totally organic nanocomposite biological material with feasible mechanical properties: silk......Page 51
2.3.2.2 Example of a organic–inorganic nanocomposite: nacreous shell......Page 53
2.3.2.3 DNA-origami templating: towards aperiodic self-assemblies......Page 54
2.4.1 Controlled surface properties and dirt repellency......Page 55
2.4.2 Surface-adhesion-based bioinspired gecko effects......Page 57
2.5 Self-healing polymers......Page 59
2.6 Conclusions......Page 60
References......Page 61
3.1.1 Renewable energy - portable energy sources......Page 67
3.1.2 Power consumption in a mobile phone - now and in the future......Page 69
3.2.1 Batteries and supercapacitors......Page 71
3.2.2 Nanostructured electrodes......Page 72
3.2.3 Carbon nanohorns (CNHs) and their special surface properties......Page 74
3.2.4 Supercapacitors - effect of surface......Page 75
3.2.6 Fuel cell technologies......Page 78
3.3 Energy harvesting – nanotechnologies in portable systems......Page 79
3.3.2 Ambient RF and vibration energy - micro- and nanowatt level power harvesting......Page 80
3.3.3.1 P–n junction solar cells with nanowires or carbon nanotubes......Page 83
3.3.3.2 Dye-sensitized solar cells......Page 85
3.4 Conclusions......Page 89
References......Page 90
4.1 Introduction......Page 92
4.2 The digital mainstream......Page 95
4.2.1 The ultimate limits of scaling......Page 96
4.3 New approaches for computing......Page 97
4.4 Logical computation principles......Page 99
4.5.1 Differences between analog and digital processing......Page 103
4.5.2 Computations with dynamical systems and hybrid analog-digital systems......Page 104
4.6 Physical implementation......Page 105
4.6.1 Recipes for nanocomputing systems......Page 111
4.7 Architectures for nanosystems......Page 112
4.7.1 Challenges of nanoarchitectures......Page 113
4.7.2 Examples......Page 115
4.8 Memory technologies for the future......Page 119
4.8.1 Flash memory......Page 120
4.8.2 Future options for memory technologies......Page 121
4.9 Comparisons of nanocomputing solutions for mobile devices......Page 127
Acknowledgments......Page 132
References......Page 133
5.1.1 Ubiquitous sensing, actuation, and interaction......Page 137
5.1.2 The need for sensors and actuators in future mobile devices......Page 139
5.2.1 Creating the sensors of the future......Page 141
5.2.2 Nature's way of sensing......Page 143
5.2.3 Physical nanoscale transducers - nanowires and resonators......Page 147
5.2.3.1 Nanoscale strain gauges based on carbon nanostructures......Page 148
5.2.3.2 Piezoelectric nanostructures......Page 150
5.2.3.3 Nanowire field effect transistors and sensors......Page 151
5.2.3.4 Chemical sensing with nanowire, carbon nanotube, and graphene devices......Page 152
5.2.3.5 Mass spectrometry using nanoscale resonators......Page 153
5.2.3.6 Field emission based detection......Page 156
5.2.3.7 From nanowire and NEMS devices to complex nanoscale sensor systems......Page 157
5.2.4.1 Optical chemical sensors......Page 158
5.2.4.2 Nanophotonics......Page 159
5.2.5.1 Surface plasmon polaritons (SPPs)......Page 160
5.2.5.2 Localized surface plasmons (LSPs)......Page 162
5.2.5.4 Plasmonics applications in sensing......Page 163
5.2.6.1 Electrochemical sensors......Page 164
5.2.6.2 Impact of nanostructures on sensing......Page 165
5.3.1 Nanoscale enablers for signal processing......Page 167
5.3.2 Power amplification and signal coding......Page 168
5.3.3 Noise enhanced signal processing......Page 169
5.3.4 Large arrays of nanoscale components......Page 172
5.3.5 Machine learning in sensor signal processing......Page 173
5.3.6 Plasmonics in signal processing......Page 174
5.4.2 Nanoscale actuation based on electroactive polymers......Page 176
5.4.3 Mechanical metamaterials......Page 180
5.5 Towards future cognitive solutions......Page 181
References......Page 182
6.1 Introduction......Page 190
6.2 Some principles of radio communications systems......Page 191
6.3 Wireless communications concepts......Page 193
6.4 The state-of-the-art and future trends......Page 195
6.5 Radio system requirements......Page 197
6.6 Radio implementation architectures......Page 201
6.7.1 Introduction......Page 204
6.7.2 Potential of nanoelectronics in radios......Page 205
6.7.3.1 Impedance levels and matching......Page 206
6.7.3.2 Interconnections......Page 209
6.7.3.3 High-frequency projections......Page 210
6.7.3.5 CNT radio......Page 212
6.7.4.1 Performance requirements of front end components......Page 213
6.7.4.2 NEMS resonators for RF filters......Page 215
6.7.4.3 Thin, flexible, low loss, tunable antenna......Page 217
6.7.5 Graphene for ultrafast electronics......Page 218
6.7.5.1 Tuning the electrical properties of graphene......Page 220
6.7.5.3 Graphene transistor......Page 221
6.7.5.4 Graphene-based NEMS......Page 223
6.7.6 Model for design of the nanocomponents......Page 224
6.8 Future directions......Page 225
References......Page 226
7.2.1 The dominance of the cathode ray tube (CRT)......Page 229
7.2.2 The rise of LCDs......Page 230
7.3.1 Field emission displays (FEDs)......Page 235
7.3.2 Organic light emitting displays (OLEDs)......Page 237
7.3.3 Electrophoretic displays......Page 239
7.4 Displays as an intuitive human interface......Page 240
7.5 Conclusions......Page 242
References......Page 243
8.2 Commercialization of nanotechnologies......Page 245
8.3.1 From closed to open innovation......Page 246
8.3.2.1 Customers and users......Page 248
8.3.2.2 Suppliers......Page 249
8.3.2.4 Universities......Page 250
8.3.2.6 Intermediaries......Page 251
8.3.3.2 Strategic alliances......Page 252
8.3.3.5 Informal relationships......Page 253
8.3.4.1 Technology intelligence......Page 254
8.3.4.2 IP management......Page 255
8.3.4.3 Corporate venturing......Page 256
8.3.5 OI and nanotechnologies......Page 257
8.4.1.1 From first generation (1G) to third generation (3G)......Page 259
8.4.1.2 The emergence of global value chain networks......Page 260
8.5 Conclusions......Page 262
References......Page 263
9.2 Perception and performance......Page 266
9.3 The development of the Internet......Page 268
9.4 Reaching maturity: Nanotech 1.0......Page 269
9.5 Towards industrial reinvention......Page 270
9.7 Conclusions......Page 272
References......Page 273
10 Conclusions......Page 274
Index......Page 278