Nanotechnology is the buzzword these days. This book provides a broad overview of nanotechnology as applied to contemporary electronics and photonics. The areas of application described are typical of what originally set off the nanotechnology revolution. An account of original research contributions from researchers all over the world, the book is extremely valuable for gaining an understanding of the latest developments in applied nanotechnology. Clearly structured and readable, the book is useful for both students and researchers alike: students can learn about the various aspects of nanotechnology and professional researchers can update themselves on the new developments in this dynamic field.
The book covers nanoscale materials and devices for both electronics and optical technologies. The emphasis throughout is on experimental methods rather than theoretical modeling. The material will provide food for thought for researchers and research students keen to develop new technologies at the ultra-small scale and to open up new avenues for research.
Contents: From Microstructures for Nanostructures (F Rahman); Nanoscale Materials and Structures for Electronics: Assembling Ferromagnetic Single-electron Transistors with Atomic Force Microscopy (H Pettersson et al.); Nanoporous Alumina Templates for Nanowire Electron Devices (T L Wade et al.); Single-walled Carbon Nanotube Transistors (S Kim & S Mohammadi); Cooling with Integrated Carbon Nanotube Films (G Tóth et al.); AC Dielectrophoresis Alignment of Gallium Nitride Nanowires (GaN NWs) for Use in Device Applications (S-K Lee et al.); Design, Fabrication, and Applications of Large-area Well-ordered Dense-array Three-dimensional Nanostructures (C-H Choi & C-J CJ Kim); UV-NIL Stamp Fabrication Techniques with Diamond-like Carbon Film (J-H Jeong et al.); ZnO Nanowires and Nanobelts: Structure Switch by Indium Doping (H J Fan); Field Emission Properties of 1-D SiC Nanostructures (G-Z Shen & D Chen); Nanoscale Materials and Structures for Photonics: Manipulating the Optical Properties of Individual and Arrays of Gold Nanopyramids (J Lee et al.); Properties of Gold Nanoantennas in the Infrared (F Neubrech et al.); Three-dimensional Holographic Polymeric Photonic Crystal Operating in the Optical communication Window (J-Q Chen & R T Chen); Continuous Roll Nano-imprinting Technology for Large-scale Nano- and Microstructures (S Kang et al.); Fabrication and Characterization of Two-dimensional ZnO Photonic Nanostructrures (J-B Cui); Visible Light Emission from Innate Silicon Nanoparticles in Silicon-compound Films Grown at Low Temperatures (Z-X Cao).
Author(s): Faiz Rahman, Faiz Rahman
Publisher: Pan Stanford Pub
Year: 2008
Language: English
Pages: 315
City: Singapore
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Наноматериаловедение;
Nanoscale Materials and Structures for Electronics......Page 8
Preface......Page 6
List of Contributions......Page 10
1 From Microstructures to Nanostructures Faiz Rahman......Page 14
2.1 Introduction......Page 42
2.2 Experimental Details......Page 45
2.3 Results and Discussions......Page 48
References......Page 52
3.1 Introduction......Page 54
3.2 Basic Background......Page 55
3.3 Novel Approaches......Page 60
References......Page 70
4.1 Introduction......Page 76
4.2 Electronic Structure and Operating Principles of SWNT-FETs......Page 79
4.2.1 Atomic layer-deposited high-k dielectrics......Page 81
4.2.2 Fabrication and performance of SWNT-FETs......Page 82
4.3.1 SWNT-FET fabrication using dielectrophoresis......Page 85
4.3.2 SWNT-FETs using guided growth of nanotube arrays on quartz......Page 87
4.4 Interface Quality of SWNT-FETs......Page 89
References......Page 94
5.1 Introduction......Page 96
5.2 Experimental......Page 98
5.3 Results and Discussion......Page 101
Acknowledgements......Page 105
References......Page 106
6 AC Dielectrophoresis Alignment of Gallium Nitride Nanowires (GaN NWs) for Use in Device Applications Sang-Kwon Lee, Tae-Hong Kim and Seung-Yong Lee......Page 110
6.1 Introduction......Page 111
6.2.2 Dielectrophoresis (DEP)......Page 112
6.2.3 UV-blue GaN NW LEDs......Page 113
6.3.1 Material characteristics......Page 114
6.3.2 Dielectrophoresis characteristics......Page 115
6.3.3 GaN NW LEDs......Page 118
6.3.4 GaN NW half-wave current rectifiers......Page 119
References......Page 122
7.1 Introduction......Page 126
7.2.1 Materials and methods......Page 128
7.2.2 Design and fabrication of “candlestick-like” nanostructures......Page 131
7.2.3 Design and fabrication of “hierarchical” nano structures......Page 132
7.2.4 Design and fabrication of “sharp-tip” nanostructures......Page 134
7.3.1 Low-friction superhydrophobic surface......Page 135
7.3.2 Novel substrate for nanobioscience and nanobioengineering......Page 137
References......Page 139
8.1 Introduction......Page 144
8.2.1 Stamp fabrication technique using DLC coating and focused ion beam lithography......Page 146
8.2.2 Stamp fabrication technique using water-soluble polymer and DLC coating......Page 147
8.2.3 Stamp fabrication technique using two-photon polymerization and DLC coating......Page 153
8.3 Fabrication of Diamond-like Carbon Stamps for Ultraviolet Nanoimprint Lithography......Page 157
8.3.1 Deposition of F-DLC thin film......Page 158
8.3.2 Fabrication of F-DLC stamp......Page 160
8.3.3 UV-NIL experiment using F-DLC stamp......Page 162
8.4 Summary......Page 164
References......Page 165
9.1 Introduction......Page 168
9.3 Overview of the Result......Page 171
9.4 [0001]-axial Nanowires......Page 173
9.5 1120 < >-axial Nanobelts......Page 175
9.6 Early Growth Stages......Page 178
9.7 Discussion on the Growth Mechanism......Page 180
9.8 Thermodynamic Modeling......Page 181
9.9 Conclusions......Page 186
References......Page 187
10.1 Introduction......Page 192
10.2.1 Carbon nanotube confined method......Page 193
10.2.3 Solution methods......Page 194
10.3 Bamboo-like and Hierarchical 1-D SiC Nanostructures......Page 195
10.4 Field Emission Properties of 1-D SiC Nanostructures......Page 199
10.5 Conclusions......Page 202
References......Page 203
Nanoscale Materials and Structures for Photonics......Page 9
11.1 Introduction......Page 206
11.2 Optical Properties of Metal Nanostructures......Page 207
11.3 PEEL: Fabrication Methodology for Nanopyramids......Page 208
11.4 Encapsulation of Arrays of Nanopyramids......Page 209
11.5 Optical Characterization of Gold Nanopyramids......Page 210
11.6 Orientation-dependent Scattering Properties......Page 211
11.7 Spectral Determination of the Orientation of Gold Nanopyramids......Page 213
11.8 Scattering Properties of Arrays of Pyramids with Tips Pointed Perpendicular to a Surface (Orientation I)......Page 214
11.9 Scattering Properties of Arrays of Pyramids with Tips Pointed Parallel to a Surface (Orientation II)......Page 216
11.10 Conclusions......Page 218
References......Page 219
12.1 Introduction......Page 222
12.2 Measurement of Antenna Resonances in the Infrared......Page 225
12.3 Surface Enhanced Infrared Absorption (SEIRA)......Page 230
References......Page 231
13 Three-dimensional Holographic Polymeric Photonic Crystal Operating in the Optical Communication Window Jiaqi Chen and Ray T. Chen......Page 236
13.1 Introduction......Page 237
13.2 Fabrication Setup and Device Structure Simulation Results......Page 238
13.3 Characterization of Fabricated Devices......Page 242
13.4 Superprism Effects Simulation......Page 244
References......Page 247
14.1 Introduction......Page 250
14.2.1 Direct mechanical machining......Page 252
14.2.2 Wrapping of a thin metal or polymer stamp onto a roll base......Page 253
14.3 Continuous Thermal Roll Imprinting......Page 255
14.4 Continuous UV Roll Imprinting......Page 257
References......Page 261
15 Fabrication and Characterization of Two-dimensional ZnO Photonic Nanostructures Jingbiao Cui......Page 264
15.1 Introduction......Page 265
15.2 Experimental Procedures......Page 267
15.3 Results and Discussion......Page 269
15.4 Conclusions......Page 276
References......Page 277
16.1 Introduction......Page 280
16.2 Formation of Silicon Particles in Silane Plasma......Page 282
16.3 Experimental Details......Page 283
16.4 Light Emission from Innate Silicon Particles......Page 284
16.4.1 Si-in-SiOx......Page 285
16.4.2 Si-in-SiNx......Page 291
16.4.3 Si-in-SiC......Page 300
16.5 Conclusions......Page 304
References......Page 305
Index......Page 308